Math 294 Week 6 -Contrapositive and Contradiction

Contrapositive

Defier Consider a statemat of the form $P \Rightarrow Q$.

- The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$.
- The inverse of $P \Rightarrow Q$ is $\neg P \Rightarrow \neg Q$.
- The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.
eq Fix two positive number m and n.
Consider the staternat,
"If $m n>64$, then either $m>8$ or $n>8$ "
The converse is "If either $m>8$ on $n>8$, then $m n>64$."
The inverse is " It $m n \leqslant 64$, then $m \leqslant 8$ and $n \leqslant 8$
The contrapositive is "If $m \leqslant 8$ and $n \leqslant 8$, then $m n \leqslant 64$.
Theorem The contrapositive of a statemat is equivalent to the origiml statement.
Symbolically, $(P \Rightarrow Q)$ if ant only if $(, P \Rightarrow \neg Q)$ pr te make a truth table:

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$,$Q \Rightarrow \neg P$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Prot Strategy (Prot by Contappazitiv)
To prove a statement of the far $P \Rightarrow Q$, it's enough to show $\rightarrow Q \Rightarrow \neg P$, that is, ass ump Q is false and prove P is false.
eg Fix two positive numbers m and n.
Prove the staternt,
If $m n>64$, then either $m>8$ or $n>8$ ".
pf We prove the contrapositive.
Assume that $m \leqslant 8$ and $n \leqslant 8$,
We wat to show that $m n \leqslant 64$.
By algebra, on n $\leqslant 8 \cdot 8=64$, so me are done.
ea Led $x \in \mathbb{2}$. Prove that if $5 x-7$ is even, then x is odd. pf We pron the contrapositive.

Assume that x is even.
Then $x=2 a$ for some integer 9 .
Thus $5 x-7=5(2 a)-7$

$$
\begin{aligned}
& =10 a-7 \\
& =10 a-8+1 \\
& =2(5 a-4)+1
\end{aligned}
$$

Since $5 a-4$ is an integer $5 x-7$ is odd.

Contradiction

When proving things, we start with some assumptions and making logical deductions.
If we manage to prov something clearly false, assuming the reasoning is all correct, then something mist have been wang with or assumptions.

Prot stategy (Proof by contradiction)
To prove a statement P, you can first assume that P is falls then vo this assumption to prove a contradiction.

Why does this work? Lot C represent a contradiction (a false statemat).
If we can prove $\cap P \Rightarrow C$, and C is false, then $\cap P$ must be false. So P is true.
eg There is no smallest positive neal number. pE Assume for the sake of contradiction that there is a smallest positive real number r. Notice that $\frac{r}{2}$ is also a real number, and

$$
0<\frac{r}{2}<r
$$

This is a contradiction, since $\frac{r}{2}$ is a smaller positive real number.

So there is no smallest positive real number.
eq Prove that $\sqrt{2}$ is irrational.
pK For this proof, he will need to know that n is evan it and only it n^{2} is even.
Assume for the sake of contradiction that $\sqrt{2}$ is rational. That is, there are integers a and b such that $\sqrt{2}=\frac{a}{b}$. In particular we can assume that $\frac{a}{b}$ is fully simplified, so a and b have no common factors. Then

$$
\begin{aligned}
2 & =\frac{a^{2}}{b^{2}} \\
\Rightarrow 2 b^{2} & =a^{2}
\end{aligned}
$$

So a^{2} is even.
This mans that a is even.
So $a=2 c$ for some integer c.
Then

$$
\begin{aligned}
2 b^{2} & =a^{2}=(2 c)^{2}=4 c^{2} \\
\Rightarrow \quad b^{2} & =2 c^{2}
\end{aligned}
$$

So b^{2} is eve, which mains that b is even.
Hence both a and b are even.
But he assumed that $\frac{a}{b}$ was fully simplified this is a contradiction!
So $\sqrt{2}$ is irrational.

Note Some authors use $\mathcal{Z} \rightarrow \leftarrow, \Rightarrow E$, or to denote that a contradiction has been reached.

Thu (Evodid) There are infinitely many prime numbers. pa Assume for the sale of contradiction that there are finitely many prime.
call them $p_{1}, p_{2}, \ldots, p_{n}$ (a complete list).
Consider the number $q=p_{1} p_{2} \cdots p_{n}+1$.
If q is composite, then it is divisible by some prime number.
Hoverer, notice that for each p_{i}, q dinnered by p_{i} has a remainder of 1 .
So q cannot be composite, and thus it must be prime. But q was not on our list of all primes, a contradiction!
So there most be infinitely many primes.

