Math 294 Week 8 - Induction II
Real)
To prise a statemat of the form " $\forall n \in \mathbb{N}, P(n)$ ", it's enough to:

1. Prove P(0)
2. a) Let $n \in(N$, and ass ump $P(n)$
b) Prove $P(n+1)$.
eg Recall that $\frac{d^{n}}{d x^{n}} f(x)$ means taking the derivative of $f(x) \quad n$ times.
Also recall that $\frac{d}{d x} x^{k}=k x^{k-1}$
Prot that for all $n \geqslant 1$,

$$
\frac{\partial^{n}}{\partial x^{n}} x^{n}=n!\quad(=n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 2 \cdot 1)
$$

pt We proceed by induction on n.
$P(n)$ is the statement $\frac{d^{n}}{d x^{n}} x^{n}=n$!"
Base $C_{\text {art }} P(1)$ is " $\frac{d}{d x} x=1$!".
$\frac{d}{d x} x=1$ and $1!=1$, so $P(1)$ is true.
Induction Step Let $n \geqslant 1$, and assume that $P(n)$ is tree.
That is, that $\frac{d^{n}}{d x^{n}} x^{n}=n$!. (IN)
We want to prove $P(n+1)$, that is,

$$
\frac{d^{n+1}}{\partial x^{n+1}} x^{n+1}=(n+1)!
$$

We calculate:

$$
\frac{d^{n+1}}{d x^{n+1}} x^{n+1}=\frac{d^{n}}{d x^{n}}\left(\frac{d}{d x} x^{n+1}\right)
$$

$$
\begin{aligned}
& \left.=\frac{d^{n}}{d x^{n}}(n+1) x^{n}\right) \\
& =(n+1) \frac{d^{n}}{d x^{n}} x^{n} \\
& =(n+1) n!\quad \text { by IH } \\
& =(n+1)!
\end{aligned}
$$

so by induction,

$$
\frac{d^{n}}{d x^{n}} x^{n}=n!
$$

fan all $n \geqslant 1$.

Strong In auction
Recall "regular" on "weak" induration:
Theorem (The Principle of Mathematical Induction)
For each $n \in \mathbb{N}$, let $P(n)$ be some statement. if
(1) $P(0)$ is true and
(2) For all $n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$ is true,
then for all $n, P(n)$ is true.

Sometimes, weak induction is not pourtul enough. We can make some changes (highlighted in red):

Theorem (The Principle of Strong Induction) For each $n \in \mathbb{N}$, let $P(n)$ be some statement.
$1 f$
(1) $P(0)$ is true and
(2) For all $n \in \mathbb{N}$, if $P(k)$ is true for all $k \leqslant n$,
then $P(n+1)$ is true
then for all $n, P(n)$ is true.
eg (First, we make the obsenuxtion that $r=\frac{3+\sqrt{5}}{2}$ is an irrational number, and that $r+\frac{1}{r}=3$).
Prove that if r is a nonzero rad number such that $r e \frac{1}{r}$ is an integer. then for all integer $n \geq 1$, $r^{n}+\frac{1}{r^{n}}$ is an integer.
pt We proceed by strong induction on n.
$P(n)$ is the statemat " $r^{n}+\frac{1}{r n}$ is an integer"
Bare case $P(1)$ is " $r^{\prime}+\frac{1}{r}$ " is an intoge".
$r^{\prime}+\frac{1}{r^{\prime}}=r+\frac{1}{r}$ which we assumed to be an integer.
so P(1) is true
Induction Step
Let $n \geqslant 1$.
Assume that $P(k)$ is tree for all $1 \leqslant k \leqslant n$.
That is, that
$r^{6}+\frac{1}{r^{*}}$ is an integer for all $1 \leqslant k \leqslant n$ (LH) We mat to show that $r^{n+1}+\frac{1}{r^{n+1}}$ is an integer.
Notice that

$$
r^{n+1}+\frac{1}{r^{n+1}}=\left(r^{n}+\frac{1}{r^{n}}\right)\left(r+\frac{1}{r}\right)-\left(r^{n-1}+\frac{1}{r^{n-1}}\right)
$$

By the induction hypothesis, each of $\left(r^{n}+\frac{1}{r^{n}}\right)$, $\left(r+\frac{1}{r}\right)$, and $\left(r^{n-1}+\frac{1}{r^{n-1}}\right)$ are integers.

So $r^{n+1}+\frac{1}{r^{n+1}}$ is an integer as nell, since multiplying and subtracting integers gives another integer.
Thus $P(n+1)$ is true.
By strong induction, if $r+\frac{1}{r}$ is an integer, then for any $n \geq 1, r^{n}+\frac{1}{r^{n}}$ is also on integer.

Note If we used weak induction, we wouldn't be able to say that $r^{n-1}+\frac{1}{r^{n-1}}$ is an integer in the induction step.
So we really do need to use strong induction here.

