Math 294 Week 9 - Functions

Def's Let X and Y be two sets.
A function f from X to Y is a specification of elemats $f(x) \in Y$ for $x \in X$, such that

$$
\begin{array}{r}
\forall x \in X, \quad \exists!y \in Y, \quad y=f(x) \\
\text { exists Unique (exactly one) }
\end{array}
$$

For $x \in X$, the (Unique) element $f(x) \in Y$ is called the values of f at x
The set X is called the domain of f.
The set Y is called the codomain of f. We verite $f: X \rightarrow Y$ to denote that f is a function from X to Y.

Functions are often described using a formula, eg $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$, but this doesn't have to be the case.
es $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}1 & \text { it } x \text { is rational } \\ 0 & \text { it } x \text { is irrational. }\end{cases}
$$

Functions oft involve numbers, but this dessn't have to be the case.
cs $h=\{a, b, c\} \rightarrow\{$ ned, green, blue $\}$
defined by

$$
\begin{aligned}
& h(a)=\operatorname{rd} \\
& h(b)=b / v e \\
& h(c)=\text { red }
\end{aligned}
$$

Images + Preimages

Defin Let $F: X \rightarrow Y$ be a function and let $u \subseteq X$.
The image of U under f is the subset $f[u] \subseteq y$
defined by

$$
\begin{aligned}
f[U] & =\{f(x) \mid x \in U\} \\
& =\{y \in Y \mid \exists x \in U, y=f(x)\}\binom{\text { alternate }}{\text { definition }}
\end{aligned}
$$

In words, $f[U]$ is the set of values that f takes an inputs from U.

The image of f is the set $f[X]$, that is, the set of all possible values that f can take.
eg Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$.
The image of f is the set of nonnegative real number $\mathbb{R}^{\geqslant 0}$
pt We want to show $f[\mathbb{R}]=\mathbb{R}^{210}$
We proceed by double containment.

$$
\left(f[\mathbb{R}] \subseteq \mathbb{R}^{\geqslant}\right)
$$

Let y $\in[\in \mathbb{R}]$.
This means that $y=f(x)=x^{2}$ for some $x \in \mathbb{R}$.
We know $x^{2} \geqslant 0$ for any $x \in \mathbb{R}$, so $y \in \mathbb{R}^{\geqslant 0}$.

$$
(\mathbb{R} \geqslant 0 \subseteq f[\mathbb{R}])
$$

Let $y \in \mathbb{R}^{\geqslant 0}$.
Since 4 is nonnegative, it has a square root $\sqrt{y} \in \mathbb{R}$.
Then $y=(\sqrt{y})^{2}=f(\sqrt{\varphi})$.
So y $\in \in[\mathbb{R}]$.
Thus by dabble containment, $f[\mathbb{R}]=\mathbb{R}^{\geqslant 0}$.
eg Let $f: X \rightarrow Y$ be a function, and let $U, V \subseteq X$.
Is it always true that $f[U \cap V] \subseteq f[U] \cap f[V]$?

$p \in$ Let $y \in f(u \cap V)$.
Then $y=f(x)$ fan some $x \in U \cap \cup$.

By definition of intersection, $x \in U$ and $x \in V$. We need to show $y \in f[U]$ and $y \in f[V]$.
Since $x \in U$ and $f(x)=y, \quad y \in f[U]$.
Since $x \in V$ and $f(x)=y, \quad y \in f[V]$.
Hence by definition of intersection, y\&f[U] $f f[U]$. Therefore, $f[u \cap V] \leq f[U] \cap f[v]$.

Defin Let $f: X \rightarrow Y$ be a function and let $V \subseteq y$. The preimage of V under f is the subset $f^{\prime 1}[U] \leq y$ defined by

$$
f^{-1}[V]=\{x \in X \mid f(x) \in V\}
$$

In words, $f^{-1}[V]$ is the set of elements in X that f sends to an element of V.

eq Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
Then

$$
\left.\begin{array}{l}
\cdot f^{-1}[\{1,4\}]=\{-2,-1,1,2\} \\
\cdot
\end{array} f^{-1}[\{-1,1,4\}]=\{-2,-1,1,2\}\right\}
$$

Let $g: 卫 \rightarrow 卫$ be given by $g(x)=x^{2}$
Then

$$
\begin{aligned}
& f^{-1}[\{1,4\}]=\{-2,-1,1,2\} \\
& \cdot f^{-1}[\{1,2,3,4\}]=\{-2,-1,1,2\}
\end{aligned}
$$

eg Let $f: X \rightarrow Y$ be a function, and let $u \leq X$ and $V \subseteq 4$.
Then $f[U] \subseteq V$ if and only it $U \subseteq f^{-1}[V]$.

$$
p f\left(f[u] \leqslant v \quad \Rightarrow \quad u \leqslant f^{-1}[v]\right)
$$

Assume that $f[U] \subseteq V$.
Let $x \in U$.
Thin $f(x) \in f[U]$ by the definition of image.
$\sin u \quad f[u] \subseteq V, \quad f(x) \in V$.
So $x \in f^{-1}[V]$ by the depiction of preimage.
As x wa arbitrary, $u \subseteq f^{-1}[V]$.

$$
\left(u \subseteq f^{-1}[V] \quad \Rightarrow f[u] \subseteq V\right)
$$

Assume $u \leq f^{-1}[v]$.
Let $y \in f[u]$.
B_{1} defritia of image there is $x \in U$ such that $y=f(x)$.

Since $u \subseteq f^{-1}[v], \quad x \in f^{-1}[V]$.
By definition of preimge, $f(x) \in V$.
Since $y=f(x), \quad y \in V$.
As y vas arbitron, $t[u] \leqslant V$.

