1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(n)=2 n+1$. Is f injective? Is f surjective? Prove your answers.

Solution: f is injective: Let $n_{1}, n_{2} \in \mathbb{Z}$. Suppose that $f\left(n_{1}\right)=f\left(n_{2}\right)$. We need to show that $n_{1}=n_{2}$. Since $f\left(n_{1}\right)=f\left(n_{2}\right)$, we have $2 n_{1}+1=2 n_{2}+1$. Subtracting 1 on both sides gives us $2 n_{1}=2 n_{2}$, and dividing by 2 on both sides gives us that $n_{1}=n_{2}$, as desired. So f is injective.
f is not surjective: Consider $2 \in \mathbb{Z}$. For any $n \in \mathbb{Z}, 2 n+1$ is going to be an odd integer, so there is no n such that $f(n)=2$. This shows that f is not surjective.

Given a set A, we can define a function $\operatorname{id}_{A}: A \rightarrow A$ by $\operatorname{id}_{A}(a)=a$ for every $a \in A$. The function id_{A} is called the identity function, and is the function that does nothing to its inputs.
2. Let A, B be nonempty sets and $f: A \rightarrow B$ be an injective function. Prove that there is a surjection $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A} .(g$ is called a left inverse. $)$

Solution:

We need to define g, that is, for every $b \in B$, we need to say that value $g(b)$ is. We define g as follows: fix some arbitrary $a_{0} \in A$. For each $b \in B$,

$$
g(b)= \begin{cases}a & \text { if there is } a \in A \text { such that } f(a)=b \\ a_{0} & \text { otherwise }\end{cases}
$$

g is well-defined-since f is injective, there can be at most one value of a for which $f(a)=b$, and we have given a value of $g(b)$ for every single $b \in B$.

Now, we show that g is surjective: let $a \in A$. We want to find $b \in B$ such that $g(b)=a$. Take the value of b to be $f(a)$. Since $f(a)=b$, our definition for g ensures that $g(b)=a$. So g is surjective.

Finally, we show that $g \circ f=\operatorname{id}_{A}$. Let $a \in A$. We need to show that $g(f(a))=a$. If we set $b=f(a)$, then by our definition for $g, g(b)=a$. So then $g(f(a))=a$, exactly as desired.
3. Let A, B be nonempty sets and $f: A \rightarrow B$ be a surjective function. Prove that there is an injection $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B} .(g$ is called a right inverse. $)$
4. Let A be any set, and $f: A \rightarrow A$. Prove that if f is injective but not surjective, then A must have infinitely many elements.

