INJECTIONS, SURJECTIONS, & BIJECTIONS

March 28, 2021

1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(n) = 2n + 1. Is f injective? Is f surjective? Prove your answers.

Solution: f is injective: Let $n_1, n_2 \in \mathbb{Z}$. Suppose that $f(n_1) = f(n_2)$. We need to show that $n_1 = n_2$. Since $f(n_1) = f(n_2)$, we have $2n_1 + 1 = 2n_2 + 1$. Subtracting 1 on both sides gives us $2n_1 = 2n_2$, and dividing by 2 on both sides gives us that $n_1 = n_2$, as desired. So f is injective.

f is <u>not</u> surjective: Consider $2 \in \mathbb{Z}$. For any $n \in \mathbb{Z}$, 2n + 1 is going to be an odd integer, so there is no n such that f(n) = 2. This shows that f is not surjective.

Given a set A, we can define a function $id_A : A \to A$ by $id_A(a) = a$ for every $a \in A$. The function id_A is called the *identity function*, and is the function that does nothing to its inputs.

2. Let A, B be nonempty sets and $f : A \to B$ be an injective function. Prove that there is a surjection $g: B \to A$ such that $g \circ f = id_A$. (g is called a *left inverse*.)

Solution:

We need to define g, that is, for every $b \in B$, we need to say that value g(b) is. We define g as follows: fix some arbitrary $a_0 \in A$. For each $b \in B$,

$$g(b) = \begin{cases} a & \text{if there is } a \in A \text{ such that } f(a) = b \\ a_0 & \text{otherwise} \end{cases}$$

g is well-defined-since f is injective, there can be at most one value of a for which f(a) = b, and we have given a value of g(b) for every single $b \in B$.

Now, we show that g is surjective: let $a \in A$. We want to find $b \in B$ such that g(b) = a. Take the value of b to be f(a). Since f(a) = b, our definition for g ensures that g(b) = a. So g is surjective. \Box

Finally, we show that $g \circ f = id_A$. Let $a \in A$. We need to show that g(f(a)) = a. If we set b = f(a), then by our definition for g, g(b) = a. So then g(f(a)) = a, exactly as desired.

- 3. Let A, B be nonempty sets and $f : A \to B$ be a surjective function. Prove that there is an injection $g: B \to A$ such that $f \circ g = id_B$. (g is called a *right inverse*.)
- 4. Let A be any set, and $f : A \to A$. Prove that if f is injective but not surjective, then A must have infinitely many elements.