Injections, Surjections, \& Bijections

1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(n)=2 n+1$. Is f injective? Is f surjective? Prove your answers.

Given a set A, we can define a function $\operatorname{id}_{A}: A \rightarrow A$ by $\operatorname{id}_{A}(a)=a$ for every $a \in A$. The function id_{A} is called the identity function, and is the function that does nothing to its inputs.
2. Let A, B be nonempty sets and $f: A \rightarrow B$ be an injective function. Prove that there is a surjection $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A} .(g$ is called a left inverse. $)$
3. Let A, B be nonempty sets and $f: A \rightarrow B$ be a surjective function. Prove that there is an injection $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$. (g is called a right inverse.)
4. Let A be any set, and $f: A \rightarrow A$. Prove that if f is injective but not surjective, then A must have infinitely many elements.

