Week 11

INJECTIONS, SURJECTIONS, & BIJECTIONS

March 28, 2021

1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(n) = 2n + 1. Is f injective? Is f surjective? Prove your answers.

Given a set A, we can define a function $id_A : A \to A$ by $id_A(a) = a$ for every $a \in A$. The function id_A is called the *identity function*, and is the function that does nothing to its inputs.

- 2. Let A, B be nonempty sets and $f : A \to B$ be an injective function. Prove that there is a surjection $g: B \to A$ such that $g \circ f = id_A$. (g is called a *left inverse*.)
- 3. Let A, B be nonempty sets and $f : A \to B$ be a surjective function. Prove that there is an injection $g : B \to A$ such that $f \circ g = id_B$. (g is called a *right inverse*.)
- 4. Let A be any set, and $f : A \to A$. Prove that if f is injective but not surjective, then A must have infinitely many elements.