1. In this problem, we will prove that $|\mathbb{N}|<|\mathbb{R}|$. This means that, in a very precise sense, there are "more" real numbers than natural numbers.
(a) What two things do we need to show in order to prove that $|\mathbb{N}|<|\mathbb{R}|$?
(b) Come up with an injection $g: \mathbb{N} \rightarrow \mathbb{R}$. Which of the two things from (a) does this show?
(c) We'll now show that there cannot be a surjection from \mathbb{N} to \mathbb{R}.

Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be any function. The goal is to show that f is not a surjection.
i. What do we need to do in order to show that a function is not a surjection?
ii. For each $n \in \mathbb{N}, f(n)$ is a real number. Every real number has a unique decimal expansion, so let $f(n)$ have decimal expansion $a_{n 0} \cdot a_{n 1} a_{n 2} a_{n 3} \cdots$, where $a_{n 0} \in \mathbb{Z}$ and each $a_{n i}$ for $i \geq 1$ is a digit between 0 and 9 , and the decimal expansion doesn't end with repeated 9 's (for example, we write $1 / 2$ as $0.500 \cdots$ instead of $0.499 \cdots$).
So we have

$$
\begin{aligned}
& f(0)=a_{00} \cdot a_{01} a_{02} a_{03} \cdots \\
& f(1)=a_{10} \cdot a_{11} a_{12} a_{13} \cdots \\
& f(2)=a_{20} \cdot a_{21} a_{22} a_{23} \cdots
\end{aligned}
$$

and so on.
Can you come up with a real number that doesn't appear as any of the $f(n)$'s? Think about this for a few minutes, and if you can't come up with anything, move on to the next parts of the problem.
iii. We'll define a real number b as follows:
b will have decimal expansion $b_{0} \cdot b_{1} b_{2} b_{3} \cdots$, where

$$
b_{i}= \begin{cases}0 & \text { if } a_{i i} \neq 0 \\ 1 & \text { if } a_{i i}=0\end{cases}
$$

(For example, suppose that $f(0)=0.12333 \cdots, f(1)=12.313131 \cdots, f(2)=4.4000 \cdots$, and $f(3)=0.450100 \cdots$. Then we would set $b=1.011 \cdots$.)

Is there an $n \in \mathbb{N}$ for which $f(n)=b$? If so, which n ? If not, why not?
iv. What does part iii. tell us about f ? And what does that tell us about the relationship between $|\mathbb{N}|$ and $|\mathbb{R}|$?
2. Use a similar argument to prove that for any set $X,|X|<\mathcal{P}(X)$.
3. Prove that \mathbb{Q} is countable. (Hint: first prove that $\mathbb{Z} \times \mathbb{Z}$ is countable, then construct a surjection from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Q}.)
4. David Hilbert is running a hotel, but his hotel is very special-it has infinitely many rooms, numbered $1,2,3$, and so on.

