WEEK 12 INFINITY April 6, 2021

- 1. In this problem, we will prove that $|\mathbb{N}| < |\mathbb{R}|$. This means that, in a very precise sense, there are "more" real numbers than natural numbers.
 - (a) What two things do we need to show in order to prove that $|\mathbb{N}| < |\mathbb{R}|$?
 - (b) Come up with an injection $g: \mathbb{N} \to \mathbb{R}$. Which of the two things from (a) does this show?
 - (c) We'll now show that there cannot be a surjection from \mathbb{N} to \mathbb{R} .
 - Let $f : \mathbb{N} \to \mathbb{R}$ be any function. The goal is to show that f is <u>not</u> a surjection.
 - i. What do we need to do in order to show that a function is not a surjection?
 - ii. For each $n \in \mathbb{N}$, f(n) is a real number. Every real number has a unique decimal expansion, so let f(n) have decimal expansion $a_{n0}.a_{n1}a_{n2}a_{n3}\cdots$, where $a_{n0} \in \mathbb{Z}$ and each a_{ni} for $i \ge 1$ is a digit between 0 and 9, and the decimal expansion doesn't end with repeated 9's (for example, we write 1/2 as $0.500\cdots$ instead of $0.499\cdots$).

So we have

$$f(0) = a_{00}.a_{01}a_{02}a_{03}\cdots$$

$$f(1) = a_{10}.a_{11}a_{12}a_{13}\cdots$$

$$f(2) = a_{20}.a_{21}a_{22}a_{23}\cdots$$

$$\vdots$$

and so on.

Can you come up with a real number that doesn't appear as any of the f(n)'s? Think about this for a few minutes, and if you can't come up with anything, move on to the next parts of the problem.

iii. We'll define a real number b as follows:

b will have decimal expansion $b_0.b_1b_2b_3\cdots$, where

$$b_i = \begin{cases} 0 & \text{if } a_{ii} \neq 0 \\ 1 & \text{if } a_{ii} = 0 \end{cases}$$

(For example, suppose that $f(0) = 0.12333 \cdots$, $f(1) = 12.313131 \cdots$, $f(2) = 4.4000 \cdots$, and $f(3) = 0.450100 \cdots$. Then we would set $b = 1.011 \cdots$.)

Is there an $n \in \mathbb{N}$ for which f(n) = b? If so, which n? If not, why not?

- iv. What does part iii. tell us about f? And what does that tell us about the relationship between $|\mathbb{N}|$ and $|\mathbb{R}|$?
- 2. Use a similar argument to prove that for any set X, $|X| < \mathcal{P}(X)$.
- 3. Prove that \mathbb{Q} is countable. (Hint: first prove that $\mathbb{Z} \times \mathbb{Z}$ is countable, then construct a surjection from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Q} .)
- 4. David Hilbert is running a hotel, but his hotel is very special–it has infinitely many rooms, numbered 1, 2, 3, and so on.