1. Prove Pascal's identity, which is that for all n and $k,\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}$.
2. Prove that for all $n, k, l,\binom{n}{k}\binom{k}{l}=\binom{n}{l}\binom{n-l}{k-l}$.
3. (a) Let X be a finite set with n elements. How many possible functions are there from X to $\{0,1\}$? (Side note: these sorts of functions are often thought of as assigning a "yes/no" answer to each element of X.)
(b) What other quantity have we seen that is counted by this same number? How are these two thing related?
4. Let X be a finite set with n elements and Y be a finite set with m elements. How many possible functions are there from X to Y ?
5. Prove that for all $l \leq n$,

$$
\sum_{k=l}^{n}\binom{n}{l}\binom{k}{l}=2^{n-l}\binom{n}{m}
$$

6. Let X be a finite set with n elements. Given an element $x \in X$ and a function $f: X \rightarrow X$, we say that f fixes x if $f(x)=x$ (i.e., f doesn't change x at all). Prove that the number of functions $f: X \rightarrow X$ that exactly k elements is $\binom{n}{k}(n-1)^{n-k}$.
