Quantifiers

Date, 2021

1. Write the following statement as a logical formula: For all real numbers x and y, if $x \neq y$, then $x^{2}+y^{2}>0$. Is this statement true?

The formula should be $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},\left[(x \neq y) \Rightarrow\left(x^{2}+y^{2}>0\right)\right]$. The parentheses and brackets are not strictly necessary, but it helps to see how each sub-statement is separated out.

The statement is true.
2. Translate the following logical formula into a plain English sentence, without using any variables:

$$
\forall a \in \mathbb{Q}, \forall b \in \mathbb{Q},(a<b \Rightarrow \exists c \in \mathbb{Q},[a<c<b])
$$

Is this statement true?
The statement says that between any two rational numbers, there is another rational number.
The statement is true.
3. If you were asked to prove a statement of the form

$$
\forall x \in X, \exists y \in Y, P(x, y)
$$

where $P(x, y)$ is a statement with variables x and y ranging over sets X and Y, what should be your process to prove this statement?

First, we would let $x \in X$. Then, we want to prove " $\exists y \in Y, P\left(x, y^{\prime \prime}\right.$ ". To do this, we would have to find a specific element $a \in Y$ so that $P(x, a)$ is true.
4. If you were asked to prove a statement of the form

$$
(\exists x \in X, P(x)) \Rightarrow(\forall y \in Y, Q(y))
$$

where $P(x)$ is a statement with variable x ranging over X and $Q(y)$ is a statement with variable y ranging over Y, what should be your process to prove this statement?

We would first assume the "if" part of the implication. That is, we would assume that there is an element a in the set X for which $P(x)$ is true.
Then, we want to use that to prove the "then" part of the implication. That is, we want to prove $" \forall y \in Y, Q(y)$ ". In order to prove this, we would let y be in Y, and prove that $Q(y)$ is true.
5. We say that a proposition r is stronger than another proposition s if $r \Rightarrow s$.

Let $P(x, y)$ be a statement with variables x and y ranging over sets X and Y. Consider the two propositions

$$
\begin{equation*}
\forall x \in X, \exists y \in Y, P(x, y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\exists y \in Y, \forall x \in X, P(x, y) \tag{2}
\end{equation*}
$$

Which of the two is stronger? Prove your answer.
Statement (2) is stronger.
Assume that (2) is true. We want to prove (1).
Let $a \in X$. The goal is to show $\exists y \in Y, P(a, y)$. Since (2) is true, we know that there is an element $b \in Y$ such that $\forall x \in X, P(x, b)$. Since $a \in X$ and $\forall x \in X, P(x, b)$, it follows that $P(a, b)$ is true. We have found an element $b \in Y$ so that $P(a, b)$ is true, which is exactly what our goal was.

Therefore, (1) is true, as desired.
6. Let $P(x)$ be a statement with variable x ranging over X.
(a) Prove that $\neg(\exists x \in X, P(x))$ if and only if $\forall x \in X, \neg P(x)$. Recall that to prove $r \Longleftrightarrow s$, you have to prove $r \rightarrow s$ and $s \rightarrow r$.
(hint: if q is a statement and you want to prove $\neg q$, one strategy is to assume that q is true and derive something false. This indicates that q could not have been true to begin with and so q is false - this is known as a proof by contradiction)
(b) Use part (a) to prove that $\neg(\forall x \in X, P(x))$ if and only if $\exists x \in X, \neg P(x)$.
(hint: you should use the law of double negation, which says that if q is a statement, then $q \Longleftrightarrow \neg \neg q)$
(c) In words, what do parts (a) and (b) say? (these are sometimes known as de Morgan's laws for quantifiers)
7. (Challenge) Write out a logical formula that expresses the statement "there exists exactly one $x \in X$ such that $P(x)$ is true".
This is sometimes written as $\exists!x \in X, P(x)$ (where the quantifier \exists ! is read as "exists unique"). Define a new quantifier \forall ! so that \forall ! satisfies de Morgan's laws for quantifiers (see Problem 6)

