QUANTIFIERS

Date, 2021

- 1. Write the following statement as a logical formula: For all real numbers x and y, if $x \neq y$, then $x^2 + y^2 > 0$. Is this statement true?
- 2. Translate the following logical formula into a plain English sentence, without using any variables:

$$\forall a \in \mathbb{Q}, \forall b \in \mathbb{Q}, (a < b \Rightarrow \exists c \in \mathbb{Q}, [a < c < b]).$$

Is this statement true?

3. If you were asked to prove a statement of the form

$$\forall x \in X, \exists y \in Y, P(x, y),$$

where P(x, y) is a statement with variables x and y ranging over sets X and Y, what should be your process to prove this statement?

4. If you were asked to prove a statement of the form

$$(\exists x \in X, P(x)) \Rightarrow (\forall y \in Y, Q(y)),$$

where P(x) is a statement with variable x ranging over X and Q(y) is a statement with variable y ranging over Y, what should be your process to prove this statement?

5. We say that a proposition r is stronger than another proposition s if $r \Rightarrow s$.

Let P(x,y) be a statement with variables x and y ranging over sets X and Y. Consider the two propositions

$$\forall x \in X, \exists y \in Y, P(x, y)$$

and

$$\exists y \in Y, \forall x \in X, P(x, y).$$

Which of the two is stronger? Prove your answer.

- 6. Let P(x) be a statement with variable x ranging over X.
 - (a) Prove that $\neg(\exists x \in X, P(x))$ if and only if $\forall x \in X, \neg P(x)$. Recall that to prove $r \iff s$, you have to prove $r \to s$ and $s \to r$.

(hint: if q is a statement and you want to prove $\neg q$, one strategy is to assume that q is true and derive something false. This indicates that q could not have been true to begin with and so q is false – this is known as a proof by contradiction)

(b) Use part (a) to prove that $\neg(\forall x \in X, P(x))$ if and only if $\exists x \in X, \neg P(x)$.

(hint: you should use the *law of double negation*, which says that if q is a statement, then $q \iff \neg \neg q$)

- (c) In words, what do parts (a) and (b) say? (these are sometimes known as de Morgan's laws for quantifiers)
- 7. (Challenge) Write out a logical formula that expresses the statement "there exists exactly one $x \in X$ such that P(x) is true".

This is sometimes written as $\exists ! x \in X, P(x)$ (where the quantifier $\exists !$ is read as "exists unique"). Define a new quantifier $\forall !$ so that $\forall !$ satisfies de Morgan's laws for quantifiers (see Problem 6)