Power set

1. Write out the elements of $\mathcal{P}(\{0,1,2\})$.

Solution: $\mathcal{P}(\{0,1,2\})=\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$.
2. Write out the elements of $\mathcal{P}(\varnothing), \mathcal{P}(\mathcal{P}(\varnothing))$, and $\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing)))$.

Solution: $\mathcal{P}(\varnothing)=\{\varnothing\}$.
$\mathcal{P}(\mathcal{P}(\varnothing))=\{\varnothing,\{\varnothing\}\}$.
$\mathcal{P}(\mathcal{P}(\varnothing))=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}$.
3. (a) Prove that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$ implies $X \subseteq Y$.

Solution 1:

Proof. Assume that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$. We want to prove that $X \subseteq Y$.
Let $a \in X$. The goal is to prove that $a \in Y$.
Consider the set $\{a\}$. Since $a \in X$, it follows that $\{a\} \subseteq X$. By the definition of the power set, $\{a\} \in \mathcal{P}(X)$. Then since $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, we have that $\{a\} \in \mathcal{P}(Y)$. The definition of the power set tells us that $\{a\} \subseteq Y$. Hence, we have that $a \in Y$, as desired.

Solution 2:

Proof. Assume that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$. We want to prove that $X \subseteq Y$.
Recall that we proved in class that $X \in \mathcal{P}(X)$ for any set X. Since $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, we have that $X \in \mathcal{P}(Y)$. By the definition of the power set, $X \subseteq Y$, as desired.
(b) Prove that if $X \subseteq Y$ (that is, $X \subseteq Y$ but $X \neq Y$), then $\mathcal{P}(X) \neq \mathcal{P}(Y)$ (hint: try to come up with an element of $\mathcal{P}(Y)$ that is not an element of $\mathcal{P}(X)$).

Solution:

Proof. In order to prove that $\mathcal{P}(X) \neq \mathcal{P}(Y)$, we want to give an element of $\mathcal{P}(Y)$ that is not in $\mathcal{P}(X)$.
Since $X \subsetneq Y$, there is an element a such that $a \in Y$ and $a \notin X$. Notice that $\{a\} \subseteq Y$ (since $a \in Y$), but $\{a\} \nsubseteq X$ (since $a \notin X$). By the definition of power set, $\{a\} \in \mathcal{P}(Y)$, but $\{a\} \notin \mathcal{P}(X)$. So $\mathcal{P}(X) \neq \mathcal{P}(Y)$.
4. For each of the following statements, determine if the statement is true for all sets X and Y, false for all sets X and Y, or true for some choices of X and Y and false for others. Justify your answers!
(a) $\mathcal{P}(X \cup Y)=\mathcal{P}(X) \cup \mathcal{P}(Y)$
(b) $\mathcal{P}(X \cap Y)=\mathcal{P}(X) \cap \mathcal{P}(Y)$
(c) $\mathcal{P}(X \backslash Y)=\mathcal{P}(X) \backslash \mathcal{P}(Y)$
(d) $\mathcal{P}(X \times Y)=\mathcal{P}(X) \times \mathcal{P}(Y)$
5. (Challenge) Let X be a set that contains exactly n elements (we say that X has cardinality n and denote this as $|X|=n$). How many elements does $\mathcal{P}(X)$ have? Does this depend on what X is?

Indexed families of sets

6. For a real number r, define S_{r} to be the interval $[r-1, r+2]$. Let $A=\{1,3,4\}$. Determine $\bigcup_{i \in A} S_{i}$ and $\bigcap_{i \in A} S_{i}$.
Solution: Notice that $A_{1}=[0,3], A_{3}=[2,5]$, and $A_{4}=[3,6]$.
Then $\bigcup_{i \in A} S_{i}=[0,6]$ and $\bigcap_{i \in A} S_{i}=\{3\}$.
7. For each $n \geq 1$, let $X_{n}=\left[0,1+\frac{1}{n}\right)$ as in the example we did earlier. Write $\bigcup_{n \geq 1}\left[0,1+\frac{1}{n}\right)$ as an interval.
Solution: $\bigcup_{n \geq 1}\left[0,1+\frac{1}{n}\right)=\left[0, \frac{3}{2}\right)$.
8. Find an indexed family of sets $\left\{X_{n} \mid n \in \mathbb{N}\right\}$ such that all three of the following hold (it may be helpful to first figure out, in words, what each of the conditions mean):
(a) $\bigcup_{n \in \mathbb{N}} X_{n}=\mathbb{N}$;
(b) $\bigcap_{n \in \mathbb{N}} X_{n}=\mathbb{N}$; and
(c) For any $i, j \in \mathbb{N}, X_{i} \cap X_{j} \neq \varnothing$.
9. (Challenge) For this problem, we will need the following definition:

Definition. We say that a subset $U \subseteq R$ is open if, for all $a \in U$, there is a number $\delta>0$ such that $(a-\delta, a+\delta) \subseteq U$.
As an example, the interval $(0,1)$ is open (if $0<a<1$, let δ be the minimum of $\frac{a}{2}$ and $\frac{1-a}{2}$. Verify that $(a-\delta, a+\delta) \subseteq(0,1))$. On the other hand, the interval $[0,1]$ is not open (let $a=1$, and verify that no matter what $\delta>0$ you choose, $(a-\delta, a+\delta) \nsubseteq[0,1])$.
In this problem, we will show that an intersection of finitely many open sets is open, but that an intersection of infinitely many open sets might not be open.
(a) Let $n \geq 1$ and suppose that U_{1}, \ldots, U_{n} are all open subsets of \mathbb{R}. Prove that the intersection $U_{1} \cap \cdots \cap U_{n}$ is open.
(b) Prove that $\left(0,1+\frac{1}{n}\right)$ is open for all $n \geq 1$, but that $\bigcap_{n \geq 1}\left(0,1+\frac{1}{n}\right)$ is not open.

