ESP Math 294

February 9, 2021

Power set

- 1. Write out the elements of $\mathcal{P}(\{0, 1, 2\})$. Solution: $\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$
- 2. Write out the elements of $\mathcal{P}(\emptyset), \mathcal{P}(\mathcal{P}(\emptyset))$, and $\mathcal{P}(\mathcal{P}(\emptyset))$.

Solution: $\mathcal{P}(\emptyset) = \{\emptyset\}.$

 $\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}.$

 $\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$

3. (a) Prove that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$ implies $X \subseteq Y$.

Solution 1:

Proof. Assume that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$. We want to prove that $X \subseteq Y$.

Let $a \in X$. The goal is to prove that $a \in Y$.

Consider the set $\{a\}$. Since $a \in X$, it follows that $\{a\} \subseteq X$. By the definition of the power set, $\{a\} \in \mathcal{P}(X)$. Then since $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, we have that $\{a\} \in \mathcal{P}(Y)$. The definition of the power set tells us that $\{a\} \subseteq Y$. Hence, we have that $a \in Y$, as desired. \Box

Solution 2:

Proof. Assume that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$. We want to prove that $X \subseteq Y$.

Recall that we proved in class that $X \in \mathcal{P}(X)$ for any set X. Since $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, we have that $X \in \mathcal{P}(Y)$. By the definition of the power set, $X \subseteq Y$, as desired.

(b) Prove that if $X \subsetneq Y$ (that is, $X \subseteq Y$ but $X \neq Y$), then $\mathcal{P}(X) \neq \mathcal{P}(Y)$ (hint: try to come up with an element of $\mathcal{P}(Y)$ that is not an element of $\mathcal{P}(X)$).

Solution:

Proof. In order to prove that $\mathcal{P}(X) \neq \mathcal{P}(Y)$, we want to give an element of $\mathcal{P}(Y)$ that is not in $\mathcal{P}(X)$.

Since $X \subsetneq Y$, there is an element a such that $a \in Y$ and $a \notin X$. Notice that $\{a\} \subseteq Y$ (since $a \in Y$), but $\{a\} \not\subseteq X$ (since $a \notin X$). By the definition of power set, $\{a\} \in \mathcal{P}(Y)$, but $\{a\} \notin \mathcal{P}(X)$. So $\mathcal{P}(X) \neq \mathcal{P}(Y)$.

4. For each of the following statements, determine if the statement is true for all sets X and Y, false for all sets X and Y, or true for some choices of X and Y and false for others. Justify your answers!

(a)
$$\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$$

- (b) $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$
- (c) $\mathcal{P}(X \setminus Y) = \mathcal{P}(X) \setminus \mathcal{P}(Y)$
- (d) $\mathcal{P}(X \times Y) = \mathcal{P}(X) \times \mathcal{P}(Y)$
- 5. (Challenge) Let X be a set that contains exactly n elements (we say that X has cardinality n and denote this as |X| = n). How many elements does $\mathcal{P}(X)$ have? Does this depend on what X is?

Indexed families of sets

6. For a real number r, define S_r to be the interval [r-1, r+2]. Let $A = \{1, 3, 4\}$. Determine $\bigcup_{i \in A} S_i$ and $\bigcap_{i \in A} S_i$.

Solution: Notice that $A_1 = [0, 3], A_3 = [2, 5], \text{ and } A_4 = [3, 6].$

Then $\bigcup_{i \in A} S_i = [0, 6]$ and $\bigcap_{i \in A} S_i = \{3\}.$

7. For each $n \ge 1$, let $X_n = [0, 1 + \frac{1}{n})$ as in the example we did earlier. Write $\bigcup_{n\ge 1} [0, 1 + \frac{1}{n})$ as an interval.

Solution: $\bigcup_{n \ge 1} \left[0, 1 + \frac{1}{n} \right] = \left[0, \frac{3}{2} \right].$

- 8. Find an indexed family of sets $\{X_n \mid n \in \mathbb{N}\}$ such that all three of the following hold (it may be helpful to first figure out, in words, what each of the conditions mean):
 - (a) $\bigcup_{n \in \mathbb{N}} X_n = \mathbb{N};$
 - (b) $\bigcap_{n \in \mathbb{N}} X_n = \mathbb{N};$ and
 - (c) For any $i, j \in \mathbb{N}, X_i \cap X_j \neq \emptyset$.
- 9. (Challenge) For this problem, we will need the following definition:

Definition. We say that a subset $U \subseteq R$ is open if, for all $a \in U$, there is a number $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq U$.

As an example, the interval (0,1) is open (if 0 < a < 1, let δ be the minimum of $\frac{a}{2}$ and $\frac{1-a}{2}$. Verify that $(a - \delta, a + \delta) \subseteq (0,1)$). On the other hand, the interval [0,1] is <u>not</u> open (let a = 1, and verify that no matter what $\delta > 0$ you choose, $(a - \delta, a + \delta) \not\subseteq [0,1]$).

In this problem, we will show that an intersection of finitely many open sets is open, but that an intersection of infinitely many open sets might not be open.

- (a) Let $n \ge 1$ and suppose that U_1, \ldots, U_n are all open subsets of \mathbb{R} . Prove that the intersection $U_1 \cap \cdots \cap U_n$ is open.
- (b) Prove that $(0, 1 + \frac{1}{n})$ is open for all $n \ge 1$, but that $\bigcap_{n \ge 1} (0, 1 + \frac{1}{n})$ is not open.