Week 5 Sets II

February 9, 2021

Power set

- 1. Write out the elements of $\mathcal{P}(\{0,1,2\})$.
- 2. Write out the elements of $\mathcal{P}(\varnothing)$, $\mathcal{P}(\mathcal{P}(\varnothing))$, and $\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing)))$.
- 3. (a) Prove that $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$ implies $X \subseteq Y$.
 - (b) Prove that if $X \subseteq Y$ (that is, $X \subseteq Y$ but $X \neq Y$), then $\mathcal{P}(X) \neq \mathcal{P}(Y)$ (hint: try to come up with an element of $\mathcal{P}(Y)$ that is not an element of $\mathcal{P}(X)$).
- 4. For each of the following statements, determine if the statement is true for all sets X and Y, false for all sets X and Y, or true for some choices of X and Y and false for others. Justify your answers!
 - (a) $\mathcal{P}(X \cup Y) = \mathcal{P}(X) \cup \mathcal{P}(Y)$
 - (b) $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$
 - (c) $\mathcal{P}(X \setminus Y) = \mathcal{P}(X) \setminus \mathcal{P}(Y)$
 - (d) $\mathcal{P}(X \times Y) = \mathcal{P}(X) \times \mathcal{P}(Y)$
- 5. (Challenge) Let X be a set that contains exactly n elements (we say that X has cardinality n and denote this as |X| = n). How many elements does $\mathcal{P}(X)$ have? Does this depend on what X is?

Indexed families of sets

- 6. For a real number r, define S_r to be the interval [r-1,r+2]. Let $A = \{1,3,4\}$. Determine $\bigcup_{i \in A} S_i$ and $\bigcap_{i \in A} S_i$.
- 7. For each $n \ge 1$, let $X_n = [0, 1 + \frac{1}{n})$ as in the example we did earlier. Write $\bigcup_{n \ge 1} [0, 1 + \frac{1}{n})$ as an interval.
- 8. Find an indexed family of sets $\{X_n \mid n \in \mathbb{N}\}$ such that all three of the following hold (it may be helpful to first figure out, in words, what each of the conditions mean):
 - (a) $\bigcup_{n\in\mathbb{N}} X_n = \mathbb{N};$
 - (b) $\bigcap_{n \in \mathbb{N}} X_n = \mathbb{N}$; and
 - (c) For any $i, j \in \mathbb{N}$, $X_i \cap X_j \neq \emptyset$.
- 9. (Challenge) For this problem, we will need the following definition:

Definition. We say that a subset $U \subseteq R$ is *open* if, for all $a \in U$, there is a number $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq U$.

As an example, the interval (0,1) is open (if 0 < a < 1, let δ be the minimum of $\frac{a}{2}$ and $\frac{1-a}{2}$. Verify that $(a - \delta, a + \delta) \subseteq (0,1)$). On the other hand, the interval [0,1] is <u>not</u> open (let a = 1, and verify that no matter what $\delta > 0$ you choose, $(a - \delta, a + \delta) \not\subseteq [0,1]$).

In this problem, we will show that an intersection of finitely many open sets is open, but that an intersection of infinitely many open sets might not be open.

- (a) Let $n \geq 1$ and suppose that U_1, \ldots, U_n are all open subsets of \mathbb{R} . Prove that the intersection $U_1 \cap \cdots \cap U_n$ is open.
- (b) Prove that $(0, 1 + \frac{1}{n})$ is open for all $n \ge 1$, but that $\bigcap_{n \ge 1} (0, 1 + \frac{1}{n})$ is not open.