WEEK 8 Induction II

March 2, 2021

- 1. Prove that for all $n \in \mathbb{N}$, $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$.
- 2. Let $x \in \mathbb{R}$ with x > -1. Prove that for all $n \in \mathbb{N}$, $1 + nx \leq (1 + x)^n$. (Hint: at some point, you might want to consider two cases, one where $x \geq 0$, and one where -1 < x < 0.)
- 3. Prove that for all $n \in \mathbb{N}$, $\frac{d^n}{dx^n}(xe^x) = (n+x)e^x$. (Hint: use the product rule.)
- 4. Consider an $n \times n$ grid of squares. For example, here's a picture of a 3×3 grid:

Within an $n \times n$ grid, how many squares can you find? For example, in the 3×3 case, there are nine 1×1 squares, four 2×2 squares, and one 3×3 square, so there are 14 squares total.

Write your answer as a summation, and use induction to prove that this summation is $\frac{n(n+1)(2n+1)}{6}$.

- 5. (Challenge) Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (a) Prove that there is a real number a such that f(n) = an for all $n \in \mathbb{N}$.
 - (b) Deduce that f(n) = an for all $n \in \mathbb{Z}$.
 - (c) Deduce that f(x) = ax for all $x \in \mathbb{Q}$.
- 6. (Challenge) Read about the Principle of Strong Induction in the notes. Then, use strong induction to prove the following statement:

Let P be a set of integers, all at least 2, with the following two properties:

- (a) $2 \in P$ and $3 \in P$;
- (b) If n is an integer with $n \ge 2$, then either $n \in P$, or there are elements $a, b \in P$ such that n = ab.

Then any integer n with $n \ge 2$ is either an element of P, or can be written as a product of elements of P (that is, there are elements $p_1, \ldots, p_m \in P$, possibly with repeated numbers, such that $n = p_1 \cdots p_m$).