1. Prove that for all $n \in \mathbb{N}, \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.
2. Let $x \in \mathbb{R}$ with $x>-1$. Prove that for all $n \in \mathbb{N}, 1+n x \leq(1+x)^{n}$. (Hint: at some point, you might want to consider two cases, one where $x \geq 0$, and one where $-1<x<0$.)
3. Prove that for all $n \in \mathbb{N}, \frac{d^{n}}{d x^{n}}\left(x e^{x}\right)=(n+x) e^{x}$. (Hint: use the product rule.)
4. Consider an $n \times n$ grid of squares. For example, here's a picture of a 3×3 grid:

Within an $n \times n$ grid, how many squares can you find? For example, in the 3×3 case, there are nine 1×1 squares, four 2×2 squares, and one 3×3 square, so there are 14 squares total.
Write your answer as a summation, and use induction to prove that this summation is $\frac{n(n+1)(2 n+1)}{6}$.
5. (Challenge) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Prove that there is a real number a such that $f(n)=a n$ for all $n \in \mathbb{N}$.
(b) Deduce that $f(n)=a n$ for all $n \in \mathbb{Z}$.
(c) Deduce that $f(x)=a x$ for all $x \in \mathbb{Q}$.
6. (Challenge) Read about the Principle of Strong Induction in the notes. Then, use strong induction to prove the following statement:
Let P be a set of integers, all at least 2 , with the following two properties:
(a) $2 \in P$ and $3 \in P$;
(b) If n is an integer with $n \geq 2$, then either $n \in P$, or there are elements $a, b \in P$ such that $n=a b$.

Then any integer n with $n \geq 2$ is either an element of P, or can be written as a product of elements of P (that is, there are elements $p_{1}, \ldots, p_{m} \in P$, possibly with repeated numbers, such that $n=p_{1} \cdots p_{m}$).

