WEEK 9 SOLUTIONS Functions

1. Let $g: \mathbb{R} \to \mathbb{R}$ be given by g(x) = 2x. What is $g[\mathbb{Z}]$, that is, the image of \mathbb{Z} under g?

Solution:

The image of \mathbb{Z} under g is the set of even integers.

If you wanted to write a formal proof of this, it might look something like this:

Proof. Let E be the set of even integers. We prove that $q[\mathbb{Z}] = E$ by double containment.

 $(g[\mathbb{Z}] \subseteq E)$ Let $y \in g[\mathbb{Z}]$. Then y = 2x for some $x \in \mathbb{Z}$ (by definition of image). We know that 2 times any integer is an even integer, so $y \in E$. Thus $g[\mathbb{Z}] \subseteq E$.

 $(E \subseteq g[\mathbb{Z}])$ Let $y \in E$ (that is, y is even). Every even integer is divisible by two, which means that there is an integer x so that y/2 = x. Then g(x) = 2x = 2(y/2) = y. So since there is an $x \in \mathbb{Z}$ such that g(x) = y, we conclude that $y \in g[\mathbb{Z}]$. Thus $E \subseteq g[\mathbb{Z}]$.

Therefore, by double containment, $g[\mathbb{Z}] = E$ (that is, $g[\mathbb{Z}]$ is the set of all even integers).

- 2. Let $f: X \to Y$ be any function, and let $U, V \subseteq X$. We proved that it is always true that $f[U \cap V] \subseteq f[U] \cap f[V]$.
 - (a) Is it always true that $f[U] \cap f[V] \subseteq f[U \cap V]$? Prove your answer.

(A useful reminder: in order to prove that it's always true, you should prove the statement only using the fact that f is a function and that $U, V \subseteq X$. But to prove that it's not always true, it's enough to give a single example of a function f and subsets $U, V \subseteq X$ for which the statement doesn't happen. This applies for all the other parts of this problem, as well as other problems on this worksheet.)

Solution:

This is **not** always true.

Here is a counterexample:

Let $X = \{1, 2\}$ and $Y = \{1\}$. Let $U = \{1\}$ and $V = \{2\}$ (notice that U and V are both subsets of X). Define $f : X \to Y$ by f(1) = 1 and f(2) = 1.

We see that $f[U] = \{1\}$ (since f(1) = 1) and $f[V] = \{1\}$ (since f(2) = 1). So $f[U] \cap f[V] = \{1\}$. However, $U \cap V = \emptyset$. Then $f[U \cap V] = f[\emptyset] = \emptyset$.

Clearly, $\{1\} \not\subseteq \emptyset$, so it's not true in this example that $f[U] \cap f[V] \subseteq f[U \cap V]$.

(b) Is it always true that $f[U \cup V] \subseteq f[U] \cup f[V]$? Prove your answer.

Solution: This is always true.

Proof. Let $y \in f[U \cup V]$. By definition of image, there is some $x \in U \cup V$ such that y = f(x).

We consider the two cases: either $x \in U$ or $x \in V$.

- 1) If $x \in U$, then since $y = f(x), y \in f[U]$.
- 2) On the other hand, if $x \in V$, then $y \in f[V]$.

In either case, at least one of $y \in f[U]$ or $y \in f[V]$ is true, and so $y \in f[U] \cup f[V]$.

So $f[U \cup V] \subseteq f[U] \cup f[V]$.

(c) Is it always true that $f[U] \cup f[V] \subseteq f[U \cup V]$? Prove your answer.

Solution: This is always true.

Proof. Let $y \in f[U] \cup f[V]$. Then at least one of $y \in f[U]$ or $y \in f[V]$ is true.

We consider two cases:

- 1) If $y \in f[U]$, then there is $x \in U$ such that y = f(x). Notice that $x \in U \cup V$, so $y \in f[U \cup V]$ as well.
- 2) On the other hand, if $y \in f[V]$ then there is $x \in V$ such that y = f(x). Notice that $x \in U \cup V$, so $y \in f[U \cup V]$ as well.

In both cases, $y \in f[U \cup V]$, so $f[U] \cup f[V] \subseteq f[U \cup V]$.

3. Let $h : \mathbb{R} \to \mathbb{R}$ be given by h(x) = |x| (remember that |x| is the *absolute value of x*, which keeps positive numbers the same but turns negative numbers into positive numbers), and recall that (a, b) is the open interval between a and b, that is, it is all real numbers y so that a < y < b.

What is $h^{-1}[(-1,5)]$? For any two real numbers a and b where a < b, what is $h^{-1}[(a,b)]$?

Solution:

 $h^{-1}[(-1,5)] = [-5,5].$

For the second part, we have three cases:

- Case 1: a < b < 0. Then $h^{-1}[(a, b)] = \emptyset$.
- Case 2: a < 0 and $b \ge 0$. Then $h^{-1}[(a, b)] = (-b, b)$.
- Case 3: $a \ge 0$ and $b \ge 0$. Then $h^{-1}[(a, b)] = (-b, -a) \cup (a, b)$.
- 4. Let $f: X \to Y$ be any function. For each of the following statements, determine whether or not the statement is true or false and provide a proof of your answer.
 - (a) For all $U, V \subseteq Y$, $f^{-1}[U \cap V] \subseteq f^{-1}[U] \cap f^{-1}[V]$.

Solution: This statement is always true.

Proof. Let $x \in f^{-1}[U \cap V]$. Then $f(x) \in U \cap V$ (by definition of preimage). So $f(x) \in U$ and $f(x) \in V$. Again by definition of preimage, $x \in f^{-1}[U]$ and $x \in f^{-1}[V]$. Therefore, $x \in f^{-1}[U] \cap f^{-1}[V]$.

- (b) For all $U, V \subseteq Y$, $f^{-1}[U] \cap f^{-1}[V] \subseteq f^{-1}[U \cap V]$.
- (c) For all $U, V \subseteq Y$, $f^{-1}[U \cup V] \subseteq f^{-1}[U] \cup f^{-1}[V]$.
- (d) For all $U, V \subseteq Y$, $f^{-1}[U] \cup f^{-1}[V] \subseteq f^{-1}[U \cup V]$.
- (e) For all $U, V \subseteq Y$, $f^{-1}[U \setminus V] = f^{-1}[U] \setminus f^{-1}[V]$.

The other parts are all also true, and the proofs are similar.