1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x)=2 x$. What is $g[\mathbb{Z}]$, that is, the image of \mathbb{Z} under g ?
2. Let $f: X \rightarrow Y$ be any function, and let $U, V \subseteq X$. We proved that it is always true that $f[U \cap V] \subseteq$ $f[U] \cap f[V]$.
(a) Is it always true that $f[U] \cap f[V] \subseteq f[U \cap V]$? Prove your answer.
(A useful reminder: in order to prove that it's always true, you should prove the statement only using the fact that f is a function and that $U, V \subseteq X$. But to prove that it's not always true, it's enough to give a single example of a function f and subsets $U, V \subseteq X$ for which the statement doesn't happen. This applies for all the other parts of this problem, as well as other problems on this worksheet.)
(b) Is it always true that $f[U \cup V] \subseteq f[U] \cup f[V]$? Prove your answer.
(c) Is it always true that $f[U] \cup f[V] \subseteq f[U \cup V]$? Prove your answer.
3. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be given by $h(x)=|x|$ (remember that $|x|$ is the absolute value of x, which keeps positive numbers the same but turns negative numbers into positive numbers), and recall that (a, b) is the open interval between a and b, that is, it is all real numbers y so that $a<y<b$.
What is $h^{-1}[(-1,5)]$? For any two real numbers a and b where $a<b$, what is $h^{-1}[(a, b)]$?
4. Let $f: X \rightarrow Y$ be any function. For each of the following statements, determine whether or not the statement is true or false and provide a proof of your answer.
(a) For all $U, V \subseteq Y, f^{-1}[U \cap V] \subseteq f^{-1}[U] \cap f^{-1}[V]$.
(b) For all $U, V \subseteq Y,, f^{-1}[U] \cap f^{-1}[V] \subseteq f^{-1}[U \cap V]$.
(c) For all $U, V \subseteq Y, f^{-1}[U \cup V] \subseteq f^{-1}[U] \cup f^{-1}[V]$.
(d) For all $U, V \subseteq Y, f^{-1}[U] \cup f^{-1}[V] \subseteq f^{-1}[U \cup V]$.
(e) For all $U, V \subseteq Y, f^{-1}[U \backslash V]=f^{-1}[U] \backslash f^{-1}[V]$.

Compared to the results of problem 1, this tells us that preimages behave better with the set operations than images do.
5. (Challenge) Let $f: X \rightarrow Y$ be a function. For each of the following statements, determine whether or not the statement is true or and provide a proof of your answer.
(a) For all $U \subseteq X, U \subseteq f^{-1}[f[U]]$.
(b) For all $U \subseteq X, f^{-1}[f[U]] \subseteq U$.
(c) For all $V \subseteq Y, V \subseteq f\left[f^{-1}[V]\right]$.
(d) For all $V \subseteq Y, f\left[f^{-1}[V]\right] \subseteq V$.

