
Selected problems from Dummit and Foote

Drewseph

1.1: Problems 29
To any (a1, b1), (a2, b2) ∈ A × B, (a1, b1) · (a2, b2) = (a1a2, b1b2) = (a2a1, b2b1) = (a2, b2) ·
(a1, b1) since A,B are abelian, which leads to a1a2 = a2a1, b1b2 = b2b1. Thus A × B is
abelian.

1.2: Problems 10
There are 8 vertices, so any vertex, say t has 8 potential places to be rotated to. And any
vertex adjacent to t, say x has to be rotated to a vertex which is adjacent to the vertex that
t rotates to, thus x has 3 places to go. Hence there are exactly 8 × 3 = 24 rigid motions,
in other words, |G| = 24.

1.3: Problems 17
We just need to figure out how many choices we have if we pick up 4 elements for
two groups with 2 elements each group. First, if arbitrarily pick up 4 elements, there
are Cn4 = n(n−1)(n−2)(n−3)

4! = n(n−1)(n−2)(n−3)
24 . Second, if we separate 4 elements into

2 groups with 2 elements each group, then there are C2
4/2 = 3 choices. So there are

Cn4 × C2
4/2 = n(n−1)(n−2)(n−3)

24 × 3 = n(n−1)(n−2)(n−3)
8 choices.

1.3: Problems 20
S3 = {(1), (23), (12), (13), (123), (132)}. Note (123)2 = (132), (123)3 = (1), (123)(12) =
(23), (12)(123) = (13), (123)(23) = (13), (123)(13) = (12), (23)2 = (13)2 = (12)2 = (1),
also by above we can get: (123)−1(12) = (12)(123)
Since (12), (123) can generate any elements, we can set the generators can be (12), (123).
The relations are (12)2 = (1), (123)3 = (1), (123)−1(12) = (12)(123).

1.4: Problems 11
(a)

By XY =

1 a b
0 1 c
0 0 1

 1 d e
0 1 f
0 0 1

 =

1 d+ a e+ af + b
0 1 f + c
0 0 1

,

we get H(F ) is closed under matrix multiplication.
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Since Y X =

1 d+ a e+ dc+ b
0 1 f + c
0 0 1

,

and we may not always have af = dc, thus we may not always have XY = Y X. For
example, for the case that a = b = c = 1, d = e = 1, f = 2.

(b)
By the expression of XY , we know that if XY = id, then we have d + a = f + c =
e+ af + b = 0, i.e. d = −a, f = −c, e = ac− b, i.e.

X−1 =

1 −a ac− b
0 1 −c
0 0 1

.

(c)

Define Z :=

1 g h
0 1 i
0 0 1

 , then (XY )Z =

1 d+ a e+ af + b
0 1 f + c
0 0 1

 1 g h
0 1 i
0 0 1


=

1 d+ a+ g h+ e+ af + b+ (d+ a)i
0 1 f + c+ i
0 0 1

=

1 a b
0 1 c
0 0 1

1 d+ g e+ di+ h
0 1 f + i
0 0 1

=X(YZ).

So H(F ) satisfies the associative law, thus H(F ) is a group. Since each element has three
entries, each entry can have |F | choices, thus |H(F )| = |F |3.

(d)
When F = Z/2Z, each entry can only be 0 or 1. Obviously, the order of the identity is 1.

By XX =

1 a b
0 1 c
0 0 1

 1 a b
0 1 c
0 0 1

 =

1 2a 2b+ ac
0 1 2c
0 0 1

 =

1 0 ac
0 1 0
0 0 1

,

thus any non-trivial element with a = 0 or c = 0 is of order 2, therefore the order of1 1 0
0 1 0
0 0 1

 ,

1 1 1
0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1

 ,

1 0 1
0 1 1
0 0 1

 ,

1 0 1
0 1 0
0 0 1

 is 2.

1 1 b
0 1 1
0 0 1

4

=

1 1 b
0 1 1
0 0 1

2 1 1 b
0 1 1
0 0 1

2

=

1 0 1
0 1 0
0 0 1

 1 0 1
0 1 0
0 0 1

 = id.

Thus

1 1 1
0 1 1
0 0 1

,

1 1 0
0 1 1
0 0 1

 has order 4.

(e)
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By XY =

1 a b
0 1 c
0 0 1

 1 d e
0 1 f
0 0 1

 =

1 d+ a e+ af + b
0 1 f + c
0 0 1

,

we know the middle entry of the first row of XY is the sum of the middle entry of the first

row of X and the middle entry of the first row of Y . Thus to any X =

1 a b
0 1 c
0 0 1

 ∈ H(R),

the middle entry of the first row of Xn is na. Similarly, the right entry of the second row
of Xn is nc. It means if X has finite order, then a = c = 0, so if X has finite order, then

X =

1 0 b
0 1 0
0 0 1

. By the expression of XY , we can get1 0 b
0 1 0
0 0 1

 1 0 e
0 1 0
0 0 1

 =

1 0 e+ b
0 1 0
0 0 1

, which implies

1 0 b
0 1 0
0 0 1

n

=

1 0 nb
0 1 0
0 0 1

, it

means if X has finite order then X =

1 0 0
0 1 0
0 0 1

 . So every nonidentity element of the

group H(R) has infinite order.
1.5: Problems 3
By the relations, we can get Q8 =< i, j, k|i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj =
−i, ki = j, ik = −j >

1.6: Problems 25
(a) We just need to prove, to any unit vector h, the matrix rotates the unit vector about
the origin in a counterclockwise direction by θ radians. Without losing the generality, we
may just assume the unit vector to be (1, 0)T , which lies on the positive half x-axis. Then(
cosθ −sinθ
sinθ cosθ

)
·hT =

(
cosθ
sinθ

)
, which is the unit vector with the angle θ with the positive

half x-axis. So the matrix rotates the unit vector hT about the origin in a counterclockwise
direction by θ radians.

(b) By the words at the bottom of P.38, we just need to verify that the relations are
kept in the image of the generators. So just need to verify if φ(r)n = id, φ(s)2 = id,
(φ(s)φ(r))2 = id.

First, φ(s)2 =

(
0 1
1 0

)2

=

(
1 0
0 1

)
= id.

Second, note

(
cosθ −sinθ
sinθ cosθ

)
·
(
cosβ −sinβ
sinβ cosβ

)
=

(
cosθcosβ − sinθsinβ −cosθsinβ − sinθcosβ
cosθsinβ + sinθcosβ cosθcosβ − sinθsinβ

)
=

(
cos(θ + β) −sin(θ + β)
sin(θ + β) cos(θ + β)

)
, it implies that

(
cosθ −sinθ
sinθ cosθ

)n
=

(
cosnθ −sinnθ
sinnθ cosnθ

)
=
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id, in other words, φ(r)n = id.

Third, (φ(s)φ(r))2 =

(
sinθ cosθ
cosθ −sinθ

)2

=

(
1 0
0 1

)
= id. That finishes the proof.

(c) By

(
cosθ −sinθ
sinθ cosθ

)
·
(
cosβ −sinβ
sinβ cosβ

)
=

(
cos(θ + β) −sin(θ + β)
sin(θ + β) cos(θ + β)

)
it implies that(

cosθ −sinθ
sinθ cosθ

)m
=

(
cosmθ −sinmθ
sinmθ cosmθ

)
. Thus by the definition of θ, φ(θm) = φ(θ)m = id

iffm = n. And φ(rms) = φ(rm)φ(s) =

(
cosmθ −sinmθ
sinmθ cosmθ

)
.

(
0 1
1 0

)
=

(
−sinmθ cosmθ
cosmθ sinmθ

)
,

which is never trivial. And recall D2n = {1, r, r2, ..., rn−1, s, rs, ..., rn−1s}, thus only
φ(1) = id. Thus φ is injective.

1.7: Problems 12
Define the set consisting of pairs of opposite vertices of a regular n-gon as A. By the
definition of group action, we need to show any h, g ∈ D2n, a ∈ A, g · a ∈ A, 1 · a = a,
h · (g · a) = (gh) · a.
Since 1 doesn’t make any change to the n-gon, thus 1 · a = a, for any a ∈ A. And any
element of A is a combination of s, r, thus in order to show g · a ∈ A, we just need to
show s · a ∈ A, r · a ∈ A. We may define the vertices clockwise as 0, 1, 2, ..., n − 1. Let
the n/2 pairs of opposite vertices defined to be ai := {i, i + n/2}, 0 ≤ i < n/2. If we
define r(j) = j − 1 mod n with 0 ≤ j ≤ n − 1, then we get r(i) = i − 1, if i ≥ 1 and
r(0) = n − 1. Then to any pair (i, i + n/2) with 0 < i < n/2, r(i) = i − 1, r(i + n/2) =
i− 1 + n/2, i.e. r(i, i+ n/2) = (i− 1, i− 1 + n/2) = ai−1 ∈ A. To (0, n/2), r(0) = n− 1,
0 < r(n/2) = n/2− 1 < n/2, thus r(0, n/2) = (n/2− 1, n− 1) ∈ A. Thus we can conclude
r(ai) = ai−1 mod n/2. And we define the reflection is about the line connecting vertices 0, 3,
thus s(j) = −j mod n, thus to any ai, s(i) = −i mod n = n − i, s(i + n/2) = n/2 − i,
thus s(ai) = (n/2 − i, n − i) = a−i mod n/2. Thus we have proved s · a ∈ A, r · a ∈ A for
any a ∈ A, therefore g · a ∈ A, for any g ∈ D2n, a ∈ A.
Since any g ∈ D2n is in the form of risj , we just need to show (rasb) · ((rxsy) · ai) =
((rasb)(rxsy)) · ai. Indeed, by computation, we can get

((rasb)(rxsy))·ai = (ra+(−1)bxsb+y)·ai = a−1y+bi+(−1)b+1x−a mod n/2 = rasb·a−1yi−x mod n/2

Thus it is an action.
Since rxsy · ai = a−1yi−x mod n/2, thus if rxsy · ai = ai, then x = n/2, 0, y = 0, if y = 1,
then x depends on i, thus if rxsy · ai = ai for any i, then y = 0, x = n/2, 0. In other words,
kernel is {r0 = 1, rn/2}.

1.7: Problems 20
Note tetrahedron has 4 vertices, say 1, 2, 3, 4, so any element from the group of rigid mo-
tions (say G) can be seen as a permutation of the 4 vertices, thus it can be seen as an
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element of S4. Thus it induces a map φ : G → S4 Given g, h ∈ G, φ(gh) denotes the
permutation resulting from performing h and then g. This is the same as performing the
rigid motion h first, writing down the permutation φ(h), then performing the rigid motion
g, writing down the permutation φ(g), and then multiplying the permutations φ(g)φ(h).
In other words, φ is a group homomorphism. Since different rigid motions are mapped to
different permutations by definition, thus φ is injective, thus φ induces an isomorphism
between G and a subgroup of S4.

2.1: Problems 15
∪∞i=1Hi. And to any a ∈ ∪∞i=1Hi 6= ∅, since ∅ 6= Hi ⊂ ∪∞i=1Hi. To any a, b ∈ ∪∞i=1Hi exists
i, j s.t. a ∈ Hi, b ∈ Hj . Without losing generality, we may assume i ≤ j, thus Hi ⊂ Hj .
Thus a, b, b−1, a−1 ∈ Hj , thus ab−1, ba−1 ∈ Hj ⊂ ∪∞i=1Hi. By the criterion of the subgroup,
∪∞i=1Hi is a subgroup of G.

2.2: Problems 10
(1) Assume H = {1, h}. If g ∈ NG(H), then g1g−1 = gg−1 = 1, ghg−1 ∈ H, note
ghg−1 6= 1, since otherwise, gh = g, which implies h = 1, contradiction. Therefore
ghg−1 = h. Hence, if g ∈ NG(H), then g ∈ CG(H), thus NG(H) ⊂ CG(H). And by
definition of CG(H), to any g ∈ CG(H), since g1g−1, ghg−1 = h, we have gHg−1 = H,
thus CG(H) ⊂ NG(H), thus CG(H) = NG(H).

(2) Since CG(H) = NG(H) = G, any g ∈ G, ghg−1 = h, i.e. gh = hg. thus h ∈ Z(G) and
1 ∈ Z(G), thus H ≤ Z(G).

2.3: Problems 13
(1) Note (0, 1) ∈ Z × Z/2Z, has order 2 ((0, 1) + (0, 1) = (0, 2) = (0, 0)). While, in Z,
no element has finite order, while order is kept under isomorphism, thus Z × Z/2Z is not
isomorphic to Z.

(2) Similarly, (0, 1) ∈ Q × Z/2Z, has order 2, however, in Q, no element has finite order,
while order is kept under isomorphism, thus Q× Z/2Z is not isomorphic to Q.

2.3: Problems 21
Note

(
pn−1

r

)
is an integer, thus by Binomial Theorem, (1+p)p

n−1
= 1+

(
pn−1

1

)
p+
(
pn−1

2

)
p2+

· · · +
(
pn−1

n

)
pn + · · · + pp

n−1 ≡ 1 +
(
pn−1

1

)
p +

(
pn−1

2

)
p2 + · · · +

(
pn−1

n−1
)
pn−1 mod pn. Note(

pn−1

r

)
pr = pn−1(pn−1−1)...(pn−1−r+1)

r(r−1)...1 pr. It can be proved that, when prime p > 2, then

pn−r|
(
pn−1

r

)
, thus pn|

(
pn−1

r

)
pr, thus 1+

(
pn−1

1

)
p+
(
pn−1

2

)
p2+

(
pn−1

n−1
)
pn−1 ≡ 1 mod pn. There-

fore (1 + p)p
n−1 ≡ 1 mod pn.

Similarly, (1 +p)p
n−2

= 1 +
(
pn−2

1

)
p+
(
pn−2

2

)
p2 + · · ·+

(
pn−2

n

)
pn+ · · ·+pp

n−2 ≡ 1 +
(
pn−2

1

)
p+
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(
pn−2

2

)
p2 + · · ·

(
pn−2

n−1
)
pn−1 mod pn. And it can be proved that when prime p > 2, then

pn|
(
pn−2

r

)
pr, thus (1+p)p

n−2 ≡ 1+
(
pn−2

1

)
p mod pn ≡ 1+pn−1 mod pn.Thus (1+p)p

n−2 6≡ 1
mod pn.
Note Z/pnZ∗ ∼= Z/pn−1(p− 1)Z, thus the order of 1 + p divides pn−1(p− 1). By above, we
have the order of 1+p divides pn−1 (it implies the order is in the form of pt), but not pn−2.
Thus the order of 1 + p is in the form of pt, but t > n− 2, since otherwise by pt|pn−2, we
have (1 + p)p

n−2 ≡ 1 mod pn, contradiction. Thus the order of 1 + p is pn−1.

2.4: Problems 17
(a) This part is direct from 2.1: Problems 15.
(b) Since C is a nontrivial chain thus H is non-trivial. We need to show H 6= G: If not,
each gj must lie in H and so must lie in some element of the chain C. Then we have at
most n elements in the chain with each one contains a gj , and we can select the largest
group say T ⊂ H, s.t. g1, ...gn ∈ T . Then T = G. Thus T is not proper, contradiction.
Hence H 6= G, thus H is proper.
(c) To any chain C of proper subgroups with oder via inclusion, we have a upperbound H.
H is the upperbound since by (b) H is proper,and by (a), any elements is included in H.
Thus by Zorn’s Lemma, S has a maximal element.
2.5: Problems 14
Solution: (1) Since the order of v is 8 by the presentation, it’s immediately to get < v >∼=
Z8. By vu = uv5, we have vuv5 = uv10 = uv2, thus v(vu) = uv2, i.e. v2u = uv2,
in other words, v2, u commutes, thus < u, v2 > is abelian. Also u, v2 are genera-
tors in < u, v2 > with order 2 and 4 respectively. Thus < u, v2 >∼= Z2 × Z4. Note
(uv)2 = u(vu)v = u(uv5)v = u2v6 = v6, which has order 4, thus uv has order 8. Thus
< uv >∼= Z8.

(2) By vu = uv5, the elements of M are in the form of vi or uvj , we may use them to
determine the subgroups.
Note (uv2)2 = u(v2u)v2 = u2v2v2 = v4, Thus < uv2 > is cyclic with order 4. Observe
< uv2 >3 (uv2)3 = uv6, thus < uv2 >=< uv6 >.
Note (uv4)2 = 1, thus < uv4 > is a group of order 4, contained in the group < u, v4 >
with order 4.
Note (vu)2 = (uv5)2 = v6, thus < vu > has a subgroup < v6 > with order 4, and < v6 >
has a subgroup < v4 > of order 2.
Note (uv)2 = u(vu)v = u(uv5)v = v6, which has order 4, thus the order of uv is 8, hence
< uv > has order 8. Thus < uv >= (vu >, similarly, for uv3, uv7.
Now it’s easy to see that < v > has subgroups < v2 > with order 4, < v4 > with order
2. < u, v2 > has 3 possible proper subgroups generated by u, (v2)i, i 6= 4: < u, v4 >,<
uv2 >=< uv6 >, < u, v6 >, however, < u, v6 >=< u, v2 >. And < uv2 > is a cyclic group
with order 2 with subgroup < v4 >.
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So the lattice of subgroups of M is:

So we can conclude that the lattice of subgroups of M is the same as the lattice of sub-
groups of Z2 × Z8. But they are not isomorphic since Z2 × Z8 is abelian while M is not
abelian as uv 6= vu.

3.1: Problems 34
Solution: (a) Recall, the elements of D2n are in the form of rj , sri. To any element
(rk)i ∈< rk >, we have rj((rk)i)(rj)−1 = (rk)i. And sri(rk)i(sri)−1 = sri(rk)ir−is−1 =
s(rk)is = r−ik = rn−ki. Since i|n, i|(n − ki), thus rn−ki = (rk)j for some j, therefore
sri(rk)i(sri)−1 ∈< rk >. Thus < rk > is normal.

(b) Note any x ∈ D2n/ < rk > is in the form of r̄j , sri = sr̄i.Thus there are exactly k
elements in the form of r̄j , and k elements in the form of sr̄i. It also implies that the gener-
ators are r̄ and s̄. And it’s easy to see r̄k = 1, s̄2 = 1. Also r̄s̄ = rs = sr−1 = s̄r−1 = s̄r̄−1.
Thus D2n/ < rk > and D2k have the same presentation, thus they are isomorphic.

3.1: Problems 41
Solution: (1) Any element [x, y] := xyx−1y−1 has inverse [y, x]. And to any [a1, b1]...[an, bn],
[c1, d1]...[cm, dm] ∈ N ,[a1, b1]...[an, bn]([c1, d1]...[cm, dm])−1 = [a1, b1]...[an, bn][dm, cm]...[d1, c1] ∈
N , thus N is a subgroup.
To any x := [a1, b1]...[an, bn] ∈ N , and g ∈ G, gxg−1 = g[a1, b1]g

−1g...g−1g[an, bn]g−1 ∈ N ,
since g[ai, bi]g

−1 = gaibia
−1
i b−1i g−1 = gaig

−1gbig
−1ga−1i g−1gb−1i g−1 = [gaig

−1, gbig
−1].

(2) To any x̄, ȳ ∈ G/N , we have x̄ȳ = xy = xy ·1̄ = xyy−1x−1yx = xyy−1x−1yx = yx = ȳx̄.
Therefore x̄ȳ = ȳx̄. Thus G/N is abelian.

3.1: Problems 42
To any x ∈ H, y ∈ K, xyx−1y−1 = (xyx−1)y−1 ∈ K, since by K is normal, (xyx−1) ∈ K,
thus (xyx−1)y−1 ∈ K. Similarly, by H is normal, yx−1y−1 ∈ H, thus xyx−1y−1 ∈ H, thus
xyx−1y−1 ∈ H ∩K = 1, i.e. xyx−1y−1 = 1, xy = yx.
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3.2: Problems 11
Assume G =

∐
i∈I giK, K =

∐
j∈J kjH. Then |I| = [G : K], |J | = [K : H]. So

G = ∪i,jgikjH. If gikjH ∩ gmknH 6= ∅, then there is an h ∈ H, s.t. gikj = gmknh, so
gi = gm(knhk

−1
j ) ∈ gmK, thus giK ∩ gmK 6= ∅, contradiction. Therefore G =

∐
i,j gikjH,

thus [G : H] = |I||J |, i.e. [G : H] = [G : K][K : H].

3.2: Problems 19
If there is a subgroup H with |H| and |G : N | are relatively prime. To any h ∈ H, we
consider hN ∈ G/N . Note since N is normal, G/N is a group with order |G/N |. Thus
the order of hN divides |G/N |. Also the order of hN divides H. Since |H| and |G : N |
are relatively prime, we get the order of hN has to be 1, which implies that h ∈ N , hence
H < N . Now if there is a group H with order N , then we get |H| = |N | and |G : N | are
relatively prime, since by assumption (|N |, [G : N ]) = 1, thus H < N by we just proved,
and since |H| = |N |, we have H = N .

3.3: Problems 1
Consider the homomorphism det : GLn(F ) → F ∗, which is onto since to any a ∈ F ∗, the
matrix (ai,j) with ai.j = 0 if i 6= j, and ai,j = 1 if i = j 6= 1, and a1,1 = a, would be mapped
to a by det. And the kernel is just SLn(F ). Thus |GLn(F )/SLn(F )| = |F ∗| = q − 1.

3.3: Problems 7
Since G = MN , thus any g ∈ G can be expressed as ab with a ∈M , b ∈ N . And ab/M =
b̄, ab/N = ā. Consider the homomorphism f : G→ (G/M)×(G/N), by f(g) 7→ (gM×gN).
This is onto since to any (aM × bN) ∈ (G/M)× (G/N), we may assume a = mn, b = m′n′

with m,m′ ∈M,n, n′ ∈ N . Then aM = nM, bN = m′N . Thus m′n ∈MN = G. Observe
f(m′n) = (nM ×m′N) = (aM × bN). So we have shown that f is onto. And the kernel
is exactly M ∩N .Thus G/(M ∩N) ∼= G/M ×G/N .
3.4 Problem 11
Since H is a subgroup of the solvable group G, H is also solvable. By the alternative
definition of solvable group we can get that there exists an n such that

H = H(0) > H(1) > H(2) > H(3) > ...H(n) = 1,

where H(i+1) is the commutator subgroup of H(i), also by 3.1 problem 41, H(i+1) is the
normal subgroup of H(i), with H(i)/H(i+1) abelian. Thus H(n−1) is a non-trivial abelian
subgroup of G. We need to show H(1) is a normal subgroup of G.
Note byH E G, to any g ∈ G, h ∈ H, hgh−1 ∈ H. Thus to any x = [a1, b1][a2, b2]...[an, bn] ∈
H(1), gxg−1 = g[a1, b1]g

−1g[a2, b2]g
−1...g[an, bn]g−1 ∈ H(1) since each g[ai, bi]g

−1 =

gaibia
−1
i b−1i g−1 = (gaig

−1)(gbig
−1)(ga−1i g−1)(gb−1i g−1) = [c, d] ∈ H(1),
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where c = (gaig
−1), d = (gbig

−1). Therefore H(1) E G, now replace H by H(1), H(1) by
H(2), and repeat the procedure above, we get H(2) E G. Now we keep the procedure above
to H(i), we can get H(n−1) E G. So H(n−1) is the required A.

3.5 Problem 9
By checking the lattice of group A4 on p.111, we can see the only subgroup with or-
der 4 is < (12)(34), (13)(24) >. Note the conjugate groups have the same order, so by
< (12)(34), (13)(24) > is the unique subgroup with order 4 we get < (12)(34), (13)(24) >
doesn’t have conjugate groups, thus < (12)(34), (13)(24) > is normal. Note (12)(34) and
(13)(24) can not generate each other and they both have order 2, also (12)(34)(13)(24) =
(14)(23), which has order 2, thus there are 3 elements with order 2, thus we get <
(12)(34), (13)(24) >∼= V4.

3.5 Problem 17
There are 4 cases for x, y:
(1): x = y, then < x, y >=< x >∼= Z3, since it’s generated by a 3-cycle.
(2): x = (abc), y = (def), where a, b, c, e, e, f are different. Thus xy = yx and < x > ∩ <
y >= (1), i.e. < x, y >∼= Z3 × Z3.
(3): x = (abc), y = (abd). Thus We can embed < x, y > into A4 by x 7→ (123), y 7→ (124).
But (123)2 = (132), (124)2 = (142), (123)(124) = (13)(24), (124)(123) = (14)(23), thus
< (13)(24), (14)(23) > is a proper subgroup of < x, y > with order 4, by checking the
lattice of group A4 on p.111, A4 doesn’t have proper subgroups with order larger than 4,
thus < (123)(124) >= A4, thus < x, y >∼= A4.
(4): x = (abc), y = (cde), then we can embed < x, y > into A5 by x 7→ (123), y 7→ (345).
Note xy = (abcde) and (xy)x(xy)−1 = (bcd), (xy)y(xy)−1 = (dea), (xy)(dea)(xy)−1 =
(eab). And {x, y, (eab), (bcd), (dea)} ⊂< x, y > can generate all the 3-cycles in A5 (by
taking each element of the 5 ones, say z, to z2, we get 5 more 3-cycles, then with the initial
5 ones, we get all 10 distinct 3 cycles of A5) while An is generated by its 3-cycles, thus
< x, y >∼= A5.

4.1 Problem 2
To any g ∈ Ga, σgσ−1(σ(a)) = σg(a) = σ(a), i.e. σgσ−1 ∈ Gσ(a), thus σGaσ

−1 ⊂ Gσ(a).
Conversely, any g ∈ Gσ(a), σ

−1gσ(a) = σ−1(σ(a)) = a, so h := σ−1gσ ∈ Ga and g =
σhσ−1 ∈ σGaσ−1, hence Gσ(a) ⊂ σGaσ−1, so Gσ(a) = σGaσ

−1.⋂
σ∈G σGaσ

−1 =
⋂
σ∈GGσ(a). Since G acts transitively, σ(a) goes through each element of

A, then any element in the intersection must fix each element of A, thus the element has
to be identity, i.e. ⋂

σ∈G
σGaσ

−1 =
⋂
σ∈G

Gσ(a) = 1.

9



4.1 Problem 7
(a) To any g ∈ Ga, since a ∈ B, g(B)∩B 6= ∅, and by the definition of B, either g(B) = B
or g(B) ∩ B = ∅, thus g(B) = B, hence g ∈ GB, so Ga ⊂ GB. And to any h ∈ GB,
h(B) = B, which implies that B = h−1(B), thus h−1 ∈ GB, thus to any h, g ∈ GB,
gh−1(B) = g(B) = B, i.e. gh−1 ∈ GB, thus GB is a subgroup of G containing Ga.

(b) First we need to show they are pairwise disjoint. To any σi(B), σj(B), if c = σi(x) =
σj(y),where x, y ∈ B. Then σ−1j σi(x) = y ∈ B, thus σ−1j σi(B) = B. Hence any x ∈ B,

σ−1j σi(x) ∈ B, (assume σ−1j σi(x) = y) i.e. σi(x) = σj(y) ∈ σj(B), i.e. σi(B) ⊂ σj(B).
Similarly, we can get σj(B) ⊂ σi(B), hence σi(B) = σj(B), contradiction, so they are
pairwise disjoint.

Now we need to show A =
⋃n
i=1 σi(B). Since G is a transitive action, any a 6∈ B, b ∈ B,

there exists g ∈ G, s.t. g(b) = a, thus a ∈ g(B), and g(B) as an image of B, should be
equal to one of the σi(B), therefore a ∈

⋃n
i=1 σi(B), thus A =

⋃n
i=1 σi(B). And by the last

paragraph, it’s a disjoint union, thus they are a partition of A.

(c) (1) For S4 on A, it’s easy to see A and the sets of size 1 are blocks, and to any set B of
size two, without losing generality, we may assume that B = {1, 2}, then (23) ·B = {1, 3},
which has an intersection with B but not equal to B, thus B is not a block, therefore any
set of size two is not a block. Similarly, to any set B of size three, without losing generality,
we may assume that B = {1, 2, 3}, then (34) ·B = {1, 2, 4}, which has an intersection with
B but not equal to B, thus B is not a block, therefore any set of size three is not a block.
So we can conclude that S4 is primitive on A.

(2) Any two diagonal vertices of the square is a block: (without losing generality, we name
the 4 vertices as 1, 2, 3, 4 and (1, 3), (2, 4) are two pairs of diagonal vertices, now we focus
on (1, 3)) since the rotations with angle 90, 270 degrees would send (1, 3) to (2, 4); the ro-
tation with 180 degrees would send (1, 3) to itself. The refection about the line connecting
1, 3 would send (1, 3) to itself and the other 3 would send (1, 3) to (2, 4), therefore we get
(1, 3) is a non-trivial block, thus D8 is not primitive as a permutation group on the four
vertices of a square.

(d) If for each a ∈ A the only subgroups of G containing Ga are Ga and G. Then there are
no non-trivial blocks: Assume B is a non-trivial block. We can find an a ∈ A, s.t. a ∈ B,
then by (a), we have GB is a subgroup of G containing Ga, thus by assumption, GB = G
or Ga. If GB = G, then by G is transitive, to any b 6∈ B, there is a g ∈ G, s.t. g(a) = b,
thus g(B) 6= B, contradiction. So GB = Ga. Now since B is non-trivial, we can always find
b ∈ B, b 6= a, so Gb = GB = Ga. Since G is transitive, there exists a g ∈ G, s.t. g(b) = a.
So g 6∈ Gb = GB, but as B is a block and g(B) ∩ B 6= ∅, thus g(B) = B, thus g ∈ GB,

10



which is a contradiction. So there are no non-trivial blocks.

Conversely, now we assume the transitive group G is primitive on A. Assume there is a sub-
group H strictly containing some Ga for some a ∈ A. Define B := {h(a)|h ∈ H}. To any
g ∈ H, t ∈ B, t = h(a) for some h ∈ H, then g(t) = gh(a) ∈ B, thus g(B) ⊂ B, similarly,
g−1(B) ⊂ B, so B ⊂ g(B), hence g(B) = B. Now to any g ∈ G, 6∈ H, if c ∈ g(B) ∩ B, we
may assume g(h1(a)) = c = h2(a), where hi ∈ H, thus h−12 gh1 ∈ Ga ⊂ H, thus gh1 ∈ H,
hence g ∈ H, contradiction, thus to any g ∈ G, 6∈ H, g(B) ∩ B = ∅. Therefore B is a
block. Note, since H contains some elements not in Ga, B 6= {a}. Thus by assumption,
B = A, therefore any g ∈ G, there exists some h ∈ H, s.t. ga = ha, thus h−1g ∈ Ga, thus
g ∈ HGa = H, so G ⊂ H, i.e. H = G. Thus for each a ∈ A the only subgroups of G
containing Ga are Ga and G.

4.2 Problem 11
(1) Note g fixes no elements of G, thus π(x) is a product of cycles where all the ele-
ments are contained. It’s easy to see each cycle ( (x, xg, x2g, ...xmg), where m = n − 1,
as xnx = 1 · x = x ) is a corresponding to a coset of < x >, thus is with size n. And
G = t < x > g, where each < x > g represents a distinct coset of < x >, which also can
be identified as an n-cycle in the product of π(x). Since all the cosets are non-overlapped
and with size n, also the G is the disjoint union of these cosets, we get π(x) consists of
|G|
|x| = m n-cycles with each n-cycle is corresponding to a coset of < x >.

(2) Since π(x) is a product of m n-cycles and the sgn of an n-cycle is (−1)n−1, sgn(πx) =
[(−1)n−1]m. Thus sgn(πx) = [(−1)n−1]m = −1 if and only if n is even, m is odd, in other

words, π(x) is an odd permutation if and only if |x| is even and |G||x| is odd.

4.3 Problem 27
By class equation, |G| =

∑r
i=1 |G : CG(gi)|. By assumption gigj = gjgi, we get gi ∈ CG(gj),

thus CG(gi) ≥ r, thus we have |G| =
∑r

i=1 |G : CG(gi)| ≤
∑r

i=1 |G|/r = |G|, which implies
that |G : CG(gi)| = |G|/r, i.e. |CG(gi)| = r, i.e. CG(gi) = {g1, g2, ...gr} for each i. Note 1 is
among the g1, g2, ...gr, and CG(1) = G, thus G = CG(1) = {g1, g2, ...gr}, thus G is abelian.

4.4 Problem 18
(a) Assume the representative of K is k, then any x ∈ K, it is in the form of gkg−1, g ∈ G,
then to σ ∈ Aut(G), σ(x) = σ(g)σ(k)σ(g)−1 is in the conjugacy class of σ(k), so σ(K) is
contained in the conjugacy class of σ(k) (say K ′), similarly, σ−1(K ′) is contained in K,
thus σ(K) is a conjugacy class.

(b) The number of conjugates of a cycle is C2
n = n(n−1)

2! = n(n−1)
2 , i.e. |K| = n(n−1)

2 . Let x
be any element of order 2 in Sn, that is not a transposition. Assume x to be a product of
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k-disjoint 2-cycles, then by exercise 33 of 4.3, we get that the conjugacy class K ′ of x is of
size

|K ′| = n!

k!2k

So if |K| = |K ′|, then n(n−1)
2 = n!

k!2k
, i.e. (n − 2)! = k!2k−1, which is true iff n = 6, k = 3.

So by the assumption n 6= 6, we have |K| 6= |K ′|.

By (a), any automorphism σ of Sn maps the conjugacy class of any transposition x to
the conjugacy class of σ(x). Since automorphism keeps the order, σ(x) is of order 2. Also
by (a), these two conjugacy classes have the same order, thus σ(x) has to be a transposition.

(c) By (b), each σ ∈ Aut(Sn) maps a transpositions to transpositions, thus we have σ((1i))
is a transposition. To any (1, j), (1, i) with j 6= i; i, j 6 1, since σ is an isomorphism,
σ((1, i)) 6= σ((1, j)), and σ((1, i)), σ((1, j)) must contain a common number, since other-
wise, σ((1, j))σ((1, i)) is of order 2, hence σ−1(σ((1, j))σ((1, i))) = (1i)(1j) = (1ji) is also
of order 2, contradiction. Hence, σ((1, i)), σ((1, j)) must contain a common number say a,
i.e. σ((1, i)) = (abi), where the bis are different by σ((1, i)) 6= σ((1, j)). Also a 6= bi for
each i, since σ((1, i)) is a transposition.

(d) Recall Sn is generated by the transpositions, and any transposition (ij) = (1i)(1j)(1i),
thus the set of transpositions are generated by (12), (13), ..., (1n), i.e. Sn is generated by
(12), (13), ..., (1n), hence any automorphism of Sn is determined by its action on the ele-
ments (12), (13), ..., (1n).

By (c), any σ ∈ Aut(Sn), σ(i) 6= σ(j), i 6 j, thus for any σ ∈ Aut(Sn), the σ(1) has n
choices, hence σ(2) has n−1 choices,...,σ(i) has n− i+1 choices,... So there are n! possible
choices for σ, i.e. Sn has at most n! automorphisms.

By G/Z(G) ∼= Inn(G), we have n! = |Sn| ≤ |Inn(G)| ≤ |Aut(Sn)| ≤ n!, thus |Inn(G)| =
|Aut(Sn)|, thus Inn(G) = Aut(Sn).

4.5 Problem 22
If |G| = 132 = 3× 4× 11, then there is a 11-subgroup, say P . We know n11 ≡ 1 mod 11
and n11|(132/11) = 12, if n11 6= 1, then n11 = 12. If G is simple, then n11 = 12. And
n3 6= 1, and n3 ≡ 1 mod 3, and n3|11× 4 = 44, thus n3 = 4, 22. Similarly, n2 ≡ 1 mod 2
and n2|11 × 2 = 33, thus n2 = 3, 11, 33. And 2-groups, 3-groups, 11-groups are all cyclic,
thus their intersections can only be {1}. The number of all non-trivial elements in the
11-groups and 3-groups is at least 12× (11−1) + 4× (3−1) = 128, hence there are exactly
4 elements with 3 elements with order not dividing 3, 11, (i.e. dividing 4) thus there is
exactly one 4-group, which is normal, contradiction. Thus G can not be simple.
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4.5 Problem 33
Since the intersection of two subgroups is the subgroup of each these two subgroups, thus
H ∩ P is a subgroup of P , so it’s also a p-group. And since P is normal, to any h ∈ H,
p ∈ P ∩H, we have hph−1 ∈ P,H, thus hph−1 ∈ P ∩H, i.e. P ∩H is a normal subgroup of
H. To any Sylow-p subgroup of H, say K, observe that K is a p-subgroup of G, we get K is
contained in a Sylow-p subgroup of G, i.e. P , hence K = P ∩H, which proves P ∩H is the
Sylow-p subgroup of H, and recall we have proved it is normal, thus the uniqueness follows.

4.6 Problem 2
If N is a proper normal subgroup of Sn, n ≥ 5, then N ∩ An is a normal subgroup of An.
Since An is simple for n ≥ 5, we have N ∩ An = An, or N ∩ An = {1}. If N ∩ An = An,
then An < N , by [Sn : An] = 2, thus N = An. If N ∩ An = {1}, consider the projection
f : Sn → Sn/An ∼= Z2. If any x ∈ N , s.t. f(x) = 1, then we have x ∈ An, then x = 1,
thus the restriction f |N is injective, i.e. N ∼= f(N) is not trivial, thus N ∼= Z2. So N
is generated by an odd permutation (say x) with order 2, which can be expressed as odd
transpositions and these transpositions are disjoint since x is with order 2. Now assume
x = (a1a2)(a3a4)...(an−1an), these ai are distinct since these transpositions are disjoint.
Then (a2a3)x(a2a3) = (a1a3)(a2a4)..., which is not x or identity, thus N is not normal,
contradiction. Therefore the only proper normal subgroups of Sn (n ≥ 5), is An. So when
n ≥ 5, the normal subgroups of Sn are {1}, An, Sn.

5.1 Problem 2
(a) Assume |I| = m. Define the map f :

∏
i∈I Gi → G by: any (g1, ...gm) ∈

∏
i∈I Gi 7→

g ∈ G, where gi ∈ Gi, s.t. g is defined that the corresponding tuple of Gi in G is gi, and
the rest n −m tuples of g are just 1 for each tuple. Then it’s easy to see it’s an injective
homomorphism with image GI , thus by the first isomorphism theorem,

∏
i∈I Gi

∼= GI .

(b) By (a), without losing generality, we may assume GI = G1 × G2 × ... × Gm × {1} ×
... × {1}. And to any (g1 × g2 × ... × gm × 1 × ... × 1) ∈ GI , (h1, ...hn) ∈ G, we have
hgh−1 = (h1g1h

−1
1 × h2g2h

−1
2 × ... × hmgmh

−1
m × hm+1 · 1 · h−1m+1 × ... × hn · 1 · h−1n ) =

(h1g1h
−1
1 × h2g2h

−1
2 × ... × hmgmh−1m × 1 × ... × 1). Observe higih

−1
i ∈ Gi, thus hgh−1 =

(h1g1h
−1
1 × h2g2h

−1
2 × ...× hmgmh−1m × 1× ...× 1 ∈ GI , i.e. GI is normal. It’s easy to see

that G/GI = {1} × {1} × ...{1} ×Gm+1 × ...×Gn = GJ .

(c) By (a) GI ∼=
∏
i∈I Gi, similarly, GJ ∼=

∏
i∈J Gi, thus GI×GJ ∼=

∏
i∈I Gi×

∏
j∈J GJ

∼= G.

5.1 Problem 11
By p.155, Epn = Zp×...×Zp (n factors). We may define Zp×...×Zp =< a1 > ×...× < an >,
where each ai is of order p. Also we have aiaj = ajai and ord(ami ) = p if m 6= p, thus any
non-trivial element aN1

1 aN2
2 ...aNn

n is of order n, since (aN1
1 aN2

2 ...aNn
n )m = amN1

1 amN2
2 ...amNn

n ,
which equals to 1 iff each amNi

i = 1, while which equals to 1 iff m = 1. Observe any sub-
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group of order p is generated by an element in Epn and each non-trivial element generates
a subgroup with order p. Also < g >=< gj >, where g ∈ Epn , j 6= p, thus there are
pn−1
p−1 =

∑n−1
i=0 p

i subgroups of order p.

5.4 Problem 8
First note [x, y] = [y, x]−1, and by x[x, y] = [x, y]x, we get [x, y]−1x[x, y] = x, [x, y]−1x =
x[x, y]−1, i.e. x[y, x] = [y, x]x. Similarly, we have y[y, x] = [y, x]y.

We can prove the result by induction, when n = 1, (xy)n = xy = xnyn[y, x]
n(n−1)

2 , so
it’s true for n = 1. Now we assume the equality is true for n = k − 1, and we con-

sider the case for n = k, we know (xy)k = (xy)k−1(xy) = xk−1yk−1[y, x]
(k−1)(k−2)

2 (xy) =

xk−1yk−1(xy)[y, x]
(k−1)(k−2)

2 .

By y[y, x] = [y, x]y, we can get x−1yx = y−1x−1yxy, thus yx = xy−1x−1yxy. So yk−1xy =
yk−2(yx)y = yk−2xy−1x−1yxyy = yk−2x[y, x]y2 = yk−2xy2[y, x]. Similarly, we have
yk−1xy = yk−2xy2[y, x] = yk−3xy3[y, x]2, keep doing this we can get:yk−1xy = xyk[y, x]k−1

So xk−1yk−1(xy)[y, x]
(k−1)(k−2)

2 = xk−1(xyk[y, x]k−1)[y, x]
(k−1)(k−2)

2 = xkyk[y, x]
(k−1)k

2 . So we

proved, when n = k, (xy)k = xkyk[y, x]
(k−1)k

2 , i.e. we have finished the induction, which
shows we finished the proof.

5.4 Problem 10
By the fundamental theorem of finitely generated abelian group, a finite abelian group is
isomorphic to Zpn1

1
× Zpn2

2
× Zpmnm , where each pi is a distinct prime number. And the

subgroup {1} × ...{1} × Zpini × {1}...× {1} is a Sylow pi subgroup, by 5.1 Problem 2, we
know the whole group is the direct product of all the {1}× ...{1}×Zpini ×{1}...×{1}, i.e.
the whole group is the direct product of its Sylow subgroups.

5.4 Problem 16
To any x = [a1, b1]...[an, bn] ∈ K ′, where ai, bi ∈ K, and any g ∈ G,

gxg−1 = g[a1, b1]...[an, bn]g−1 = (g[a1, b1]g
−1)(g[a2, b2]g

−1)...(g[an−1, bn−1]g
−1)(g[an, bn]g−1),

where g[ai, bi]g
−1 = ga−1i g−1gb−1i g−1gaig

−1gbig
−1 = (gaig

−1)−1(gbig
−1)−1gaig

−1gbig
−1.

Since ai, bi ∈ K, K is normal, thus gaig
−1, gbig

−1 ∈ K, hence we have g[ai, bi]g
−1 ∈ K ′,

therefore K ′ is a normal subgroup of G.

5.5 Problem 10
(a) Z147 and Z21×Z7 are two abelian groups of order 147. They are not isomorphic because
gcd(21, 7) 6= 1.
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(b) 147 = 72× 3, By Sylow theorem, n7 = 1 mod 7, and n7|3, thus n7 has to be 1. There-
fore the unique Sylow 7-subgroup is normal.

(c) Since any group of order 147, has a Sylow 3-subgroup of order 3, i.e. ∼= Z3. Note
|Z3||Z49| = 147, and Z49 is normal by (b). Thus any subgroup of order 147 with Sylow
7-subgroup cyclic is just Z3Z49, moreover it can be represented as Z49 oφ Z3, for some
homomorphism from Z3 to Aut(Z49) = Z∗49 ∼= Z42.

Consider Z49oφZ3, note Aut(Z49) = Z∗49 ∼= Z42. Observe, (1, 0)(0, 1) = (1, 1), (0, 1)(1, 0) =
(0+φ(1) ·1, 0+ 1) = (φ(1) ·1, 1), note if φ is non-trivial, then φ(1) ·1 is not 1 and relatively
prime to 49, so if φ ∈ Aut((Z49) is not trivial, then (1, 0)(0, 1) 6= (0, 1)(1, 0). (such a
non-trivial homomorphism exists since the homomorphisms from Z3 to Z42 are not always
trivial.) Also |Z49 oφ Z3| = |Z49| × |Z3| = 147. So this is an abelian group of order 147
with Sylow 7-subgroup cyclic.

First note that if N,H, with φ ∈ Hom(H,Aut(N)), β ∈ Aut(H), then NoφH ∼= Noφ◦βH
by sending (n, h) to (n, β−1(h)).
Now, in our case, if φ is non-trivial, then φ(1) · 1 = 18, 30, since φ ∈ Hom(Z3,Z∗49) ∼= Z3

and only 18, 30 in Z∗49 are of order 3. Define φ1(1) = 18, φ2(1) = 30, which implies that
φ1(2) = 30. Note to the nontrivial β ∈ Aut(Z3), φ1 ◦ β(1) = φ1(2) = 30 = φ2(1). Thus by
above N oφ1 H ∼= N oφ2 H, in other words, these two possible groups are isomorphic, thus
there is only one non-abelian group with order 147, whose Sylow 7-subgroup is cyclic.

(d) |GL2(F7)| = (72 − 1)(72 − 7) = 48 × 42 = 32 × 25 × 7. So the Sylow 3-subgroup of
GL2(F7) is of order 9. It’s easy to see that t1, t2 ∈ GL2(F7) thus < t1, t2 >⊂ GL2(F7) ,
and t2i 6= id, but t3i = id, where i = 1, 2. Also t1t2 = 2 · id = t2t1, thus < t1, t2 >∼=< t1 >
× < t2 >= Z3 × Z3.

So < t1, t2 > is a subgroup of order 9 of GL2(F7) so it’s a Sylow-3 subgroup of GL2(F7)
isomorphic to Z3 × Z3. Any subgroup of order 3, say U , of GL2(F7), is contained in a
Sylow 3-subgroup of GL2(F7), which is conjugate to P , i.e. there exists g ∈ GL2(F7), s.t.
h ⊂ gPg−1, hence g−1hg ⊂ P i.e. U is conjugate to a subgroup of P , i.e. any subgroup of
order 3 is conjugate to a subgroup of P .

(e) By the isomorphism of the semi-direct product above, we may assume φi(1)(a, b) =
ti(a, b), so ((a1, b1), c1) · ((a2, b2), c2) = ((a1, b1) + ti(c1)(a2, b2), c1 + c2). Define x :=
((1, 0), 0), y = ((0, 1), 0), z((0, 0), 1). It’s easy to see that x, y, z generate Gi.

By computation, x2z = ((2, 0), 1) = zx, zy = ((0, 1), 1) = yx, thus

G1 =< x, y, z|x7 = y7 = z3, xy = yx, zy = yz, zx = x2z > .
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Similarly,

G2 =< x, y, z|x7 = y7 = z3, xy = yx, zy = yz, zx = x2z > .

Thus G1
∼= G2.

Similarly
G3 =< x, y, z|x7 = y7 = z3, xy = yx, zy = y2z, zx = x2z > .

Similarly
G4 =< x, y, z|x7 = y7 = z3, xy = yx, zy = y4z, zx = x2z > .

(f) By the presentation of G1, we know yx = xy, yz = zy, thus < y >⊂ Z(G1), thus Z(G1)
is non-trivial, while by the presentations of G3, G4, we can see the centres are trivial. Thus
G1 is not isomorphic to G3 or G4.

(g) By Sylow theorem, any 7-subgroup is contained in a Sylow 7-subgroup, so any 7-
subgroup is contained in Z7 × Z7, which is < x > × < y >, thus the subgroups of order 7
are < x >, < y >, < xyi >, i = 1, ..., 6.

By the presentation of G3, yxy
−1 = x, zxz−1 = x2, thus < x > is normal. And y(xyi)y−1 =

(yxy−1yi = xyi. And by zy = y2z, we have that yz−1 = z−1y2, z(xyi)z−1 = zxz−1y2i =
x2y2i = (xyi)2 ∈< xyi >, thus each < xyi > is normal, i.e. each subgroup of order 7 in G3

is normal.

Similarly to the case of G3, we can get in G4: z(xy
i)z−1 = x2y4i which is not always in

< xyi >, for example, when i = 1, zxyz−1 = x2y4 ∈< xy2 >, but < xy > ∩ < xy2 >= {1},
thus < xy > is not normal. In other words, there is a subgroup of order 7 in G4 not normal,
thus G3 6∼= G4.

(h) If the group, say G, is abelian, then the only two choices are Z147 and Z21 × Z7 since
147 = 72 × 3 and by the fundamental theorem of finitely generated group. If the group,
say G, is not abelian, then by and (b), (c), its Sylow 7-subgroup is normal and cyclic, thus
G = Z49 o Z3. And (d),(e),(f),(g) determine the four possible cases up to isomorphisms,
thus there are only 6 cases for the group G of order 147.

5.5 Problem 16
Note Aut(Z8) = Z8

∗ = {1̄, 3̄, 5̄, 7̄} ∼= Z2 × Z2, i.e. there are 3 elements with order 2, say
a, b, c, and there are 4 choices of mapping the generator of Z2 to Aut(Z8). And if mapping
the generator of Z2 to a, b, c respectively, we get 3 injective homomorphisms and if mapping
the generator of Z2 to the identity of Aut(Z8), we get a trivial homomorphism. So, we can
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conclude that there are 4 homomorphisms in total.

Now we consider the four Z8 oφi Z2, where each φi is among the 4 homomorphisms de-
scribed above.
First, note, for any i, (1, 0) ∈ Z8oφiZ2, we have (j, 0)(1, 0) = (j+φi(0)·1, 0+0) = (j+1, 0),
i.e. (1, 0)8 = id. And (0, i)(0, j) = (0 +φi(0) ·0, i+ j) = (0, i+ j), thus (0, 1)2 = (0, 0) = id.
Second by Aut(Z8) = Z8

∗ = {1̄, 3̄, 5̄, 7̄}, we can get each φi(1) = 1, 3, 5, 7 ∈ Z8.

Assume φ1 is the trivial homomorphism, then Z8 oφ1 Z2 = Z8 × Z2.

Assume φ2 is the homomorphism mapping 1 ∈ Z8 7→ 3 ∈ Z8, then to (1, 0), (0, 1) ∈ Z8 oφ2
Z2, we have (1, 0)(0, 1) = (1+φ2(0)·1, 0+1) = (1, 1) and (0, 1)(1, 0) = (0+φ2(1)·(1), 1+0) =
(3, 1), (3, 1)(1, 0) = (3 + φ2(1) · (1), 1 + 0) = (6, 1), (6, 1)(1, 0) = (6 + φ2(1) · (1), 1 + 0) =
(9, 1) = (1, 1) = (1, 0)(0, 1). Similarly, we have (0, 1)(1, 0)n = (0 + nφ2(1) · (1), 1 + 0) =

(3n, 1) and (0, 1)(1, 1)n = (0 + nφ
(
21) · (1), 1 + 1) = (3n, 2) = (3n, 0), and as n changes, 3n

can be any element in Z8 so (0, 1), (1, 0) generate Z8 oφ2 Z2.
So we can conclude that Z8 oφ2 Z2 =< (1, 0), (0, 1)|(1, 0)8 = (0, 1)2 = id, (0, 1)(1, 0)3 =
(1, 0)(0, 1) >= QD16.

Assume φ3 is the homomorphism mapping 1 ∈ Z8 7→ 5 ∈ Z8, similarly, we can get
(1, 0)(0, 1) = (1+φ3(0)·1, 0+1) = (1, 1) and (0, 1)(1, 0)n = (0+nφ3(1)·(1), 1+0) = (5n, 1),
(0, 1)(1, 1)n = (0 + nφ3(1) · (1), 1 + 1) = (5n, 0), and as n changes, 5n can be any element
in Z8, so (0, 1), (1, 0) generate Z8 oφ3 Z2. Moreover, (1, 0)(0, 1) = (1, 1) = (25, 1) =
(0, 1)(1, 0)5. So we can conclude that Z8 oφ3 Z2 =< (1, 0), (0, 1)|(1, 0)8 = (0, 1)2 =
id, (0, 1)(1, 0)5 = (1, 0)(0, 1) >= M .

Assume φ4 is the homomorphism mapping 1 ∈ Z8 7→ 7 ∈ Z8, similarly, we can get
(1, 0)(0, 1) = (1+φ3(0)·1, 0+1) = (1, 1) and (0, 1)(1, 0)n = (0+nφ4(1)·(1), 1+0) = (7n, 1),
(0, 1)(1, 1)n = (0 + nφ4(1) · (1), 1 + 1) = (7n, 0), and as n changes, 7n can be any
element in Z8, so (0, 1), (1, 0) generate Z8 oφ4 Z2. Moverover, (1, 0)(0, 1) = (1, 1) =
(49, 1) = (0, 1)(1, 0)7 = (1, 1), in other words, (1, 0)(0, 1) = (1, 1) = (0, 1)(1, 0)−1 (ob-
serve (1, 0)−1 = (1, 0)7). So we can conclude that Z8 oφ4 Z2 =< (1, 0), (0, 1)|(1, 0)8 =
(0, 1)2 = id, (0, 1)(1, 0)−1 = (1, 0)(0, 1) >= D16.

7.1 Problem 23
(a) First, 1 = 1 + 0fω ∈ Of . Also, for z1 = a1 + b1fω and z2 = a2 + b2fω, we have
that z1 + z2 = (a1 + a2) + fω(b1 + b2) ∈ Of . z1z2 = a1b1 + b1b2f2ω

2 + fω(b1a2 + a1b2).
And if D 6≡ 1 mod 4, z1z2 = a1b1 +Db1b2f

2 + f
√
D(b1a2 + a1b2) ∈ Of ; if D ≡ 1 mod 4,

z1z2 = a1b1 + D−1
4 b1b2f

2 + fω(b1a2 + a2b1 + fb1b2) ∈ Of . So we get Of is a subring of O.
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(b) Let z = a+bω ∈ O, and write b = fq+r, with 0 ≤ r ≤ f . Then z = a+bω = a+(fq+
r)ω = rω+(a+fqω) = rωOf , thus the representatives of O/Of are {0, ω, 2ω, ..., (f−1)ω}.
Thus [O : Of ] = f .

(c) Let R be a subring of O containing 1 such that the quotient group O/R has index f .
Since 1 ∈ R, Z ∈ R. To any a + bω ∈ O, we have fa + fbω ∈ R, hence fbω ∈ R, thus
Of ∈ R. Since both quotients have index f , this implies R = Of .

7.1 Problem 25
(a) αᾱ = (a + bi + cj + dk)(a − bi − cj − dk) = a2 + b2 + c2 + d2 − bcij + bdki + cbij −
cdjk − dbki+ cdjk = a2 + b2 + c2 + d2. Thus N(α) = αᾱ.

(b) N(αβ) = N((a+ bi+ cj+ dk)(x+ yi+ zj+wk)) = N((ax− by− cz− dw) + (ay+ bx+
cw−dz)i+(az−bw+cw+dy)j+(aw+bz−cy+dx)k)) = (ax−by−cz−dw)2 +(ay+bx+
cw−dz)2+(az−bw+cw+dy)2+(aw+bz−cy+dx)2 = (a2+b2+c2+d2)(x2+y2+z2+w2).
N(αβ) = N(α)N(β).

(c) If α is a unit with inverse β, by 1 = N(1) = N(αβ) = N(α)N(β) and N(α), N(β) ∈ Z,
we get N(α) = N(β) = 1. Conversely, if N(α) = 1, then 1 = N(α) = αᾱ, by definition,
ᾱ ∈ I, thus α is a unit.
To any α = a+ bi+ cj+ dk =∈ I×, thus N(a+ bi+ cj+ dk) = a2 + b2 + c2 + d2 = 1, hence
a, b, c, d = 0,±1 and 3 of them must be 0. Thus |I×| = 8. Since I× is not abelian with 4
elements of order 2, we have I× ∼= Q8.

7.1 Problem 26
(a) By V (1) = V (1·1) = V (1)+V (1), we have V (1) = 0, thus 1 ∈ R. It remains to show that
R is closed under subtraction and multiplication. Note 0 = v(1) = v(−1)V (−1) = 2V (−1),
thus −1 ∈ R, thus if a ∈ R, then so is −a.
If a, b ∈ R, then V (a − b) ≥ min{V (a), V (−b)} ≥ 0, hence R is closed under subtraction.
By V is a homomorphism we can conclude that R is closed under multiplication. Thus R
is a subring.

(b) We have 0 = v(1) = v(xx−1) = v(x) + v(x−1), so either v(x) ≥ 0 or v(x−1) ≥ 0, and
the result follows.

(c) Suppose that x ∈ R is a unit. Then x−1 ∈ R, hence V (x), V (x−1) ≥ 0. By
0 = v(xx−1) = v(x) + v(x−1), we have V (x) = 0. Now suppose that V (x) = 0. Then
0 = v(x) + v(x−1), v(x−1) = 0 thus x−1 ∈ R, which implies that x is a unit.

7.2 Problem 3
(a) Obviously, 1 = 1 +

∑∞
n=1 0 · xn ∈ R[[x]]. Let α =

∑∞
n=0 anx

n, β =
∑∞

n=0 bnx
n,
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then αβ = (
∑∞

n=0 anx
n)(
∑∞

n=0 bnx
n) =

∑∞
n=0(

∑∞
j+i=n bjai)x

n =
∑∞

n=0(
∑∞

i+j=n aibj)x
n =

(
∑∞

n=0 bnx
n)(
∑∞

n=0 anx
n) = βα. So R[[x]] is a oommutative ring with 1.

(b) We define a0 = 1, a1 = −1, ai = 0, i ≥ 2, and bi = 1, any i, thus (1−x)(1+x+x2+...) =
(
∑∞

n=0 anx
n)(
∑∞

n=0 bnx
n) =

∑∞
n=0(

∑n
k=0 akbn−k)x

n = a0(b0x
0+b1x+b2x

2+...)+a1(b0x
1+

b1x
2 + ...) = (1 + x+ x2 + ...)− (x+ x2 + x3 + ...) = 1, thus 1− x is a unit.

(c) Assume (
∑∞

n=0 anx
n) is a unit, then there exists

∑∞
n=0 bnx

n, s.t.(
∑∞

n=0 anx
n)(
∑∞

n=0 bnx
n) =∑∞

n=0(
∑n

k=0 akbn−k)x
n = 1. So a0b0 = 1, i.e. a0 is a unit in R.

Conversely, if a0 is a unit in R, Define b0 = a−10 , bn+1 = −a−10

∑n+1
j=1 ajbn+1−j , It is easy to

see that for n ≥ 1,
∑n

j=0 ajbn−j = 0, Now let g =
∑∞

i=0 bix
i, we get (

∑∞
i=0 aix

i)(g) = 1.

7.2 Problem 6
(a) Define EijA = (rpq), note rpq =

∑n
k=1 epkakq, and if p 6= i, then epk = 0, hence rpq = 0.

And if p = i, then rpq = ajq, that finishes the proof.

(b) Define AEij = (rpq), note rpq =
∑n

k=1 apkekq, and if q 6= j, then ekq = 0, hence rpq = 0.
And if q = j, then rpq = api, that finishes the proof.

(c) EpqAErs, by (a) EpqA whose pth row equals the qth row of A and all other rows are zero;
by (b) EpqAErs whose sth column equals the rth column of AEij and all other columns
are zero, thus whose p, s entry is aqr and all other entries are zero.

7.2 Problem 7
To any r ∈ R, define rI to be the diagonal matrix with d along the diagonal. To any
A = (aij) ∈Mn(R), then we can get rI ·A = A · rI = (raij), thus rI ∈ the centre.
And to any A = (aij) ∈ the centre, consider H =

∑n
i=1Ei1AE1i. By last one, H is

a diagonal matrix all of whose diagonal entries equal a11. By A is from the center,
H =

∑n
i=1AEi1E1i = A

∑n
i=1Ei1E1i = A, thus A is a diagonal matrix all of whose

diagonal entries equal a11, that finishes the proof.

7.2 Problem 13
(a) Note the conjugating by g permutes the elements of K, thus gKg−1 = K, thusgK =
Kg. So, to any

∑n
i=1 rigi, (

∑n
i=1 rigi)K =

∑n
i=1 rigiK =

∑n
i=1 riKgi =

∑n
i=1Krigi =

K(
∑n

i=1 rigi), thus K is in the centre.

(b) To any
∑n

i=1 rigi ∈ RG and α,
∑n

i=1 rigiα =
∑r

j=1(
∑n

i=1 rigi)(ajKj) by (a),
=
∑r

j=1(ajKj)(
∑n

i=1 rigi) = (
∑r

j=1 ajKj)(
∑n

i=1 rigi) = α(
∑n

i=1 rigi). Thus α is in the
center.

Conversely, assume α is in the centre. Since G = ∪Ki, α is in the form of
∑
ak, where
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k ∈ Ki for some i and a ∈ R. If aik is a sum element of α, where k ∈ Ki, ai ∈ R, then since
the conjugation permutes the elements of Ki, all the other elements of Ki times a should
also be a sum element since α is fixed under conjugation, thus α is in the form of

∑n
i=1 aiKi.

7.3 Problem 10
(a) Yes (b) No (c) Yes (d) No (e) Yes (f) No.

7.3 Problem 29
To any x, y ∈ that set and z ∈ R, assume xn = 1 = ym. Since R is commutative, thus
(xz)n = xnzn = 0zn = 0. And (x− y)n+m =

∑
Cin+mx

i(−y)n+m−i Since i+ (n+m− i) =
n+m, either i ≥ n or n+m−i ≥ m, in either case we get xiyn+m−i = 0, thus (x+y)n+m = 0.
So we get the set is an ideal.

7.3 Problem 33
(a) If a1, ...an are nilpotent and a0 is a unit, then by 7.1 problem 14 and the sum nilpotent
elements is nilpotent, we get it’s a unit, since the polynomial is a sum of a nilpotent element
and a unit.
Conversely, if the poly is a unit, assume q(x) = bmx

m+...b0 and p(x)q(x) = 1, then b0a0 = 1
thus a0 is a unit. Now we have anbm = 0, an−1bm+anbm−1 = 0, ..., anb0+an−1b1+...a0bn =
0. By multiplying proper an

k to each equation, we may conclude that an
m+1−jbj = 0.Thus

(an)m+1q(x) = 0. However q(x) is a unit, which can not be a zero-divisor, thus (an)m+1 = 0,
i.e. an is a nilpotent, thus p(x)− anxn is a unit, therefore by repeating the last procedure
we get an−1 is nilpotent. Keep this procedure, we can conclude all the ai, i 6= 0 are nilpotent.

(b) If each ai is nilpotent, then each aix
i is also a nilpotent element of R[x], then p(x) is

a sum of nilpotent elements, thus it’s nilpotent by last problem. If p(x) is nilpotent.
Conversely, we can prove by induction. To degree 0, then a0 is nilpotent by definition.
Now we assume to any polynomial with degree n−1, if the polynomial is nilpotent then its
coefficients are nilpotent. Now to any nilpotent poly with degree n, say anx

n + ...a1x+ a0,
and assume (anx

n + ...a1x+ a0)
m = 0, s.t. amn x

nm = 0, hence amn = 0, i.e. an is nilpotent,
and anx

n is nilpotent. By last problem, anx
n + ...a1x+ a0 − anxn is nilpotent, which is a

nilpotent poly with degree n− 1 thus all its coefficients are nilpotent. Thus any n-degree
nilpotent poly’s coefficients are nilpotent. That finishes the proof.

7.4 Problem 11
If both I, J are not contained in P , then there exits i ∈ I, j ∈ J , s.t. i, j 6∈ P , but
ij ∈ IJ ⊂ P , thus either i or j is contained in P , contradiction. Thus either I or J is
contained in P .

7.4 Problem 19
To any prime ideal P of R, R/P is a finite integral domain which is a field, thus P is
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maximal.

7.4 Problem 30
To any x, y ∈ that radI and z ∈ R, assume xn, ym ∈ I. Since R is commutative,
thus (xz)n = xnzn ∈ I, since xn ∈ I. And (x − y)n+m =

∑
Cin+mx

i(−y)n+m−i Since
i+ (n+m− i) = n+m, either i ≥ n or n+m− i ≥ m, in either case we get xiyn+m−i ∈ I,
thus (x+ y)n+m ∈ I. So we get the radI is an ideal.
To any a · I ∈ (radI)/I, there exits n ∈ Z∗, s.t. (a · I)n = 0. And any a · I ∈ R/I, s.t.
(a · I)n = 0, then an ∈ I, so a · I ∈ (radI)/I. So by 7.3 exercise 29, (radI)/I = R(R/I).

7.4 Problem 32
(a) Intersections of ideals are ideals so Jac I is an ideal. Since it is the intersection of ideals
all of which contain I, then it contains I.

(b) To any maximal ideal M containing I,R/M is a field. If r ∈ R, rn ∈ I, then
(r · M)n ∈ I · M = M , so rn ∈ M , since M is prime, we get r ∈ M . So radI ⊂
JacI.

(c) Let n = pa11 p
a2
2 ...p

ak
k , where pis are distinct prime numbers. Then Jac nZ = (p1)∩(p2)∩

... ∩ (pk) = (p1p2...pk).

7.4 Problem 37
To any r ∈ R −M , consider the ideal < r >, which is contained in a maximal ideal if
< r >6= R. Since R is local, if < r >6= R, r ∈< r >⊂ M , which is a contradiction. Thus
< r >= R, hence 1 ∈< r >, thus r is a unit.

Conversely, any maximal ideal doesn’t contain any units, otherwise it contains 1, which
is a contradiction. Thus any maximal ideal is contained in M , hence it equals to M by
maximality. Thus there is only one maximal ideal.

7.4 Problem 41
(a) Note Z is a PID, thus the ideals are in the form of < x >, where x ∈ Z. If x = pn1

1 ...p
nm
m ,

where pis are distinct prime numbers. Then p1 ·(pn1−1
1 ...pnm

m ) ∈< x >. Obviously, if m 6= 1,
then to any n, (pn1−1

1 ...pnm
m )n, pn1 6∈< x >. Thus primary ideals are in the form of < pn >,

where p is prime. And obviously, < pn > and 0 are primary. That finishes the proof.

(b) To a prime ideal P , if ab ∈ P , then either a or b is contained in P , thus every prime
ideal is primary.

(c) To any zero divisor of R/Q, say r + Q, there exits s ∈ R, 6∈ Q s.t. rs ∈ Q, so by the
explanation in the question, a positive power of r and a positive power of s both lie in Q,
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which means there exists n ∈ Z∗, s.t. rn ∈ Q, thus (r +Q)n = rn +Q = Q, i.e. r +Q is a
nilpotent element.

(d) To any ab ∈rad(Q), then there exists n ∈ Z∗, s.t. (ab)n = anbn ∈ Q if either an or bn

is contained in Q, then we are done, otherwise we have neither an nor bn is in Q, we have
a positive power of an and a positive power of bn both lie in Q, thus either a or b is on
rad(Q), which finishes the proof.

7.6 Problem 5
(a) It suffices to show that if (m,n) = 1 then the ideals (m) and (n) are comaximal. Be-
cause, if we knew that this is the case then we know that (ni) and (nj) were comaximal,
and thus that the Chinese Remainder Theorem applies to the ideals (n1), ..., (nk). The
intersection of these ideals is exactly (n1...nk). The equivalences specify an element in
Z/n1 × ...Z/nk; the fact that there is a unique solutions follows from the fact that this is
isomorphic to Z/n1...nk.
If (m,n) = 1 then there exist integers a, b such that am+bn = 1; thus the ideal (m,n) = Z,
and (m) and (n) are comaximal, as desired.

(b) Since x is unique it suffices to show that this x satisfies the above equivalences. For
any i, ni|n′j for j 6= i, so

x ≡ aitin′i ≡ ai mod ni,

that finishes the proof.

(c) We have n′1 = 2025 ≡ 1 mod 8, n′2 = 648 ≡ −2 mod 25, n′3 = 200 ≡ 81 mod 38 and
t1 = 1, t2 = 12, t3 = 32. Thus x ≡ 1 · 1 · 1 + 2 · 12 · (−2) + 3 · 32 · 38 ≡ 3601 mod 16200,
and y ≡ 5 · 1 · 1 + 12 · 12 · (−2) + 47 · 32 · 38 ≡ 8269 mod 16200.

7.6 Problem 8
(a) a ∼ a since ρ11(a) = ρ11(a). If a ∼ b, then ρik(a) = ρjk(b), thus ρjk(b) = ρik(a), hence
b ∼ a. If a ∼ b, b ∼ c, then ρik(a) = ρjk(b), ρkp(b) = ρtp(c), thus ρkp ◦ρik(a) = ρtp(c). Thus
a ∼ c. That finishes the proof.

(b) If ρi(a) = ρi(b) = ā, which implies ρij(a) = d = ρij(a) for some d ∈ Aj and some j,
which is impossible since ρij is injective.

(c) Suppose that c ∈ Aq, d ∈ Aw, with ρqt(c) = ρit(a), ρws(d) = ρjs(b). Then c̄ + d̄ =

ρtk ◦ ρqt(c) + ρsk ◦ ρws(d) = ρqt(c)+ρws(d) = ρit(a)+ρjs(b) = ā+ b̄. Thus it’s well-defined.

Note to a ∈ Ai, ā + −̄a = ρii(a) + ρii(−a) = a− a = 0. Thus it has inverse. It’s
easy to see the associativity, thus it’s a group, and ρi is a group homomorphism since
ρi(a+ b) = a+ b = ρii(a) + ρii(b) = ā+ b̄ = ρi(a) + ρi(b).
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(d) Define the multiplicity by ā · b̄ = ρik(a) · ρjk(b), where a ∈ Ai, b ∈ Aj . Similarly to
(b), it’s well-defined. Since each Ak is a commutative ring, it’s immediate that ā · b̄ =
ρik(a) · ρjk(b) = ρjk(b) · ρik(a) = b̄ · ā. Thus A is a commutative ring, and the 1 is defined
as 1̄ (note ρik(1) = ρjk(1)).

(e) Define φ(ā) = φi(a), where a ∈ Ai. It’s easy to see it’s well-defined. If there is an
alternative homomorphism ψ : A → C, then to any a ∈ Ai, ψ(ā) = ψ ◦ ρi(a) = φi(a) =
φ ◦ ρi(a) = φ(ā), thus ψ = φ.

7.6 Problem 11
(a) We can identify (a1, a2, ...an) ∈ lim←−Z/p

iZ as b0 + b1p + ...bn−1p
n−1, where bi−1 =

(ai mod pi−2)/pi−1. It’s easy to see this satisfies the µij . If (a1, a2, ...an) ∈ lim←−Z/p
iZ,

= c0 + c1p + ...cm−1p
m−1. By µij , b0 + b1p + ...bn−1p

n−1 = c0 + c1p + ...cm−1p
m−1, which

shows the uniqueness. We can use the pullback of the addition and multiplication in
{b0 + b1p+ ...bn−1p

n−1} to define the addition and multiplication in Zp.

(b) Let’s prove by induction, first note 0 = 0, we assume n ∈ Z,= b0 + b1p + ...bn−1p
n−1,

then n + 1, if b0 < p − 1, then n + 1 = (b0 + 1) + b1p + ...bn−1p
n−1, otherwise, n + 1 =

0 + (b1 + 1)p+ ...bn−1p
n−1 = (b1 + 1)p+ ...bn−1p

n−1, and we can repeat what we just did
to b1, ...bn−1, in particular, if n + 1 = (bn−1 + 1)pn−1 and bn−1 + 1 = p, then n + 1 = pn.
Thus we have any n ∈ Z is contained in Zp.

(c) If (b0 + b1p + ...bn−1p
n−1) · c0 + c1p + ...cm−1p

m−1 = 1, thus (b0 + b1p + ...bn−1p
n−1) ·

(c0 + c1p+ ...cm−1p
m−1) mod p = 1, thus b0 · c0 mod p = 1, thus b0 6= 0.

If b0 + b1p+ ...bn−1p
n−1) is with b0 6= 0, then by 7.2 problem 3−(c), it is a unit.

(d) By problem (a), we identify each (a1, a2, ...an, ...) ∈ Zp as b0 + b1p + ...bn−1p
n−1 + ...,

then p(a1, a2, ...an, ...) = b0p+ b1p
2 + ...bn−1p

n + ..., thus Zp/pZp = {0, 1, ...p} = Z/pZ.
To any non-zero ideal I, let pk is the largest pi dividing all the elements in I. Thus I ⊂ (pk)
Assume a ∈ I, s.t. a = bpk, where p 6 |b, then by (c), b is a unit. Thus pk = b−1a ∈ I, thus
I = (pk).
Since Zp/(p

kZp) = Z/pkZ is a field iff k = 1, thus pZp is the unique maximal ideal.

(e) Define a = (a1, a2, ...an, ...). Obviously, ai satisfies the requirement by Fermat’s
little theorem. Assume ap−1i−1 ≡ 1 mod pi−1. There is always some b̄i ∈ Z/piZ s.t.

µi,i−1(b̄i) = ai−1. We consider the b̄i
p

in Z/piZ. And define ai := bi
p
. Note µi,1(ai) =

µi−1,1 ◦ µi,i−1(ai) = µi−1,1 ◦ µi,i−1(bi
p
) = µi−1,1(ai−1

p) by the homomorphism property,

and note in mod pi−1, by ap−1i−1 ≡ 1 mod pi−1, we have api−1 ≡ ai−1 mod pi−1, thus
µi,1(ai) = µi−1,1(ai−1

p) = µi−1,1(ai−1). So µi,1(ai) = a1.
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Now we need to show that ap−1i ≡ 1 mod pi. Note ap−1i = (bi
p
)p−1 and by the definition

of b̄i, we have b̄i = ai−1 + qpi for some q, thus ap−1i = (ai−1 + qpi)p
p−1

. Note in Z/piZ,

(ai−1 + qpi)p ≡ api−1. So ap−1i ≡ (api−1)
p−1. And by assumption ap−1i−1 ≡ 1 mod pi−1,

ap−1i−1 = 1 + kpi−1, for some k. So ap−1i ≡ (api−1)
p−1 = (1 + kpi−1)p, where (1 + kpi−1)p ≡ 1

mod pi. Therefore ap−1i ≡ 1 mod pi. That finishes the induction, i.e. we found such an
a = (a1, a2, ...an, ...).

To each n ∈ Z/nZ with n 6= 0, we can construct an An as we did above. Note, they
are different, since each a1 is different. And to any such a = (a1, a2, ...ai, ...), we have
ap−1 = (ap−1i ) = (1). So there are n− 1 roots of xn−1 = 1.

8.1 Problem 8
(a) For D = −1 the proof is in the text. First, suppose that D = −3,−7,−11; then

O = Z[1+
√
D

2 ]; we can write this as the set of numbers a
2 + b

2

√
D, where a, b ∈ Z and a ≡ b

mod 2. Let α = a+ b
√
D and let β = c+ d

√
D. Write γ = α/β = r + s

√
D. Let n be an

integer, which is closest to the rational number s, and let m be an integer that minimizes

|r −m − n/2|. We let δ = m + n1+
√
D

2 ∈ O. We claim that N(α − βδ) < N(β), which
gives us the Euclidean algorithm. N(α− βδ) = N(β)N(γ − δ), so it suffices to check that
N(γ − δ) < 1. We have
N(γ − δ) = N((r − m − n/2) + (s − n/2)

√
D) = (r − m − n/2)2 + |D|(s − n/2)2 ≤

1/4 + |D|/16 = 4+|D|
16 < 1.

Now if D = −2. We do the same process as above to define γ, but then we choose
m and n so that |s − n| and |r − m| are minimized. Then again we just need to check
that N(γ−δ) < 1. But N(γ−δ) = (r−m)2+2(s−n)2 ≤ 1

4 + 2
4 < 1. That finishes the proof.

8.1 Problem 9
First of all, it is clear that Z[

√
2] is an integral domain since it is contained in R. For

each element a +
√

2b ∈ Z[
√

2], define N(a +
√

2b) = |a2 − 2b2| to be a norm. Also,
it is multiplicative: N(xy) = N(x)N(y). Now we can show the existence of a Division
Algorithm as follows. Let x = a + b

√
2 and y = c + d

√
2 be arbitrary elements in Z[

√
2],

where a, b, c, d ∈ Z. We have:
x
y = a+b

√
2

c+d
√
2

= (ac−2bd)+(bc−ad)
√
2

c2−2d2 = r + s
√

2, where r = ac−2bd
c2−2d2 and s = bc−ad

c2−2d2 . Let m be

an integer closest to the rational number r and let n be an integer closest to the rational
number s, so that

|r −m| ≤ 1

2
and |s− n| ≤ 1

2
.

Let t := r − n+ (s−m)
√

2. Then we have t = r + s
√

2− (n+m
√

2) = x
y − (n+m

√
2)y.

yt = x− (n+m
√

2)y ∈ Z[
√

2].
Thus we have x = (n+m

√
2)y + yt (∗), with n+m

√
2, yt ∈ Z[

√
2].
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We have N(t) = |(r − n)2 − 2(s −m)2| ≤ |r − n|2 + 2|s −m|2 ≤ 1
4 + 2 · 14 = 3

4 .It follows
from the multiplicativity of the norm N that N(yt) = N(y)N(t) ≤ 3

4N(y) < N(y). Thus

the expression (∗) gives a Division Algorithm with quotient n+m
√

2 and remainder yt.

8.2 Problem 6
(a) Let S be the set of all ideals of R that are not principal, and let Ckk∈I be a totally
ordered set (under inclusion) in S. The chain Ckk∈I has as upper bound ∪sk∈ICk, which
is a ideal by the union of ideals is an ideal. If this union is principal, then we assume
it is < d > but d would have to stay in some Ck for some k, implying Ck =< d >, a
contradiction, thus the union is not principal. Thus every totally ordered set in S has an
upper bound, a maximal element of S exists by Zorn’s Lemma.

(b) Note I ⊂ Ia but I 6= Ia, thus by maximality, Ia has to be principal. Similarly Ib is
principal, say = (α). And by definition of J we have I ⊂ J , and by bIa ⊂ I, we have b ∈ J ,
thus I  Ib ⊂ J , so by maximality, J is principal, say = (β).

Now we have IaJ = (α)(β) = (αβ), and by the definition of J , we have IaJ ⊂ I.

(c) Note I ⊂ Ia = (α), thus any x ∈ I, we have x = sα, by the definition of J , s ∈ J . Thus
I ⊂ IaJ . Thus I = IaJ = (αβ), contradiction. Thus R is a PID.

8.3 Problem 6
(a) To any a + bi ∈ Z[i]/(1 + i), a + bi = a − b. Thus any element can be represented by
an integer. Note 1 = 1 · 1 = (−i) · (−i) = −1, i.e. 2 = 0, Thus every even integer is 0
and every odd integer equals to 1. Thus we can get every element is either 1 or 0. Thus
Z[i]/(1 + i) is a field of order 2.

(b) Note (q) is prime (since q is prime and the ideal generated by prime element is prime),
thus Z[i]/(q) is an integral domain. Also note a + bi ∈ Z[i]/(q), a, b mod q, thus there
are q× q = q2 elements in Z[i]/(q). Therefore Z[i]/(q) is a finite integral domain, which is
hence a field.

(c) With the same reason as (b), Z[i]/(p) has order p2. Since π, π̄ are coprime (π, π̄ are
irreducible by proposition 18), and Z[i] is a PID, there exists a, b ∈ Z[i], s.t. aπ + bπ̄ = 1,
thus comaximal. Thus by Chinese remainder theorem, Z[i]/(p) ∼= Z[i]/(π)×Z[i]/(π̄). Note
Z[i]/(π), Z[i]/(π̄) are symmetrical, thus |Z[i]/(π)| = |Z[i]/(π̄)| = p.

9.1: Problems 5
Z[x, y]/ < x, y >∼= Z, which is a domain and hence < x, y > is a prime ideal.
Z[x, y]/ < 2, x, y >∼= Z/2Z, which is a field and hence < 2, x, y > is a maximal ideal. That
finishes the proof.
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9.1: Problems 17
If I is a homogeneous ideal, consider the generating set A, and B as the set of the ho-
mogeneous components of the elements in A. By definition, B ⊂ I, so (B) ⊂ I. But
I = (A) ⊂ (B), so (B) = I, hence I is generated by homogeneous polynomials.
Conversely, if I is generated by homogeneous polynomials, say {ai}i∈T . To any poly p(x)
in I, we can express as

∑
(gi,1 + gi,mi)ai, where each gi,mj is homogeneous, and recall each

ai is also homogeneous, thus each gi,mjal is homogeneous. assume the minimum degree of
polys in I is k. Then if p ∈ I is of degree k, its homogeneous component is itself, so its
homogeneous component is in I. Now assume any poly in I with degree n is with each
homogeneous component is also in I. Now to any poly in I with degree n + 1, we can
express

∑
hiai +

∑
kiai, where

∑
hiai is the part of degree at most n, and the

∑
kiai

is the homogeneous component of degree n + 1. Note
∑
hiai ∈ I, by induction its each

homogeneous component is in I and
∑
kiai ∈ I, thus we finished the induction, i.e. I is

homogeneous.

9.2: Problems 5
By the Fourth Isomorphism Theorem for rings, I/(p(x)) is an ideal of F [x]/(p(x)) if and
only if I is an ideal of F [x] containing p(x). Since F [x] is a PID, we get I = (f(x))
for some f(x) ∈ F [x]. Since (p(x)) ⊂ (f(x)), we have f(x)|p(x). Note F [x] is a UFD,
thus we can factorise p(x) = p1(x)...pn(x). Then any ideal I/(p(x)) is in the form of
(g1(x), ...gm(x))/(p(x)), where gi(x)s are distinct elements of {p1(x), ...pn(x)}.

10.1: Problems 19
Since the F [x]-submodules of V are precisely the T -invariant subspace of V . We see that
T (0) = 0 ∈ V , T (V ) ⊂ V, T (x-axis) = 0 ⊂ x-axis and T (y-axis) = y-axis ⊂ y-axis. Hence,
these are F [x]-modules.

To a submodule W , if (t, z) ∈ W with t, z 6= 0, then x · (t, z) = (t, 0), thus x-axis is
in W . And by (t, z) + (n, 0) for any n ∈ R, we have y = z is in W , to any m ∈ R,
m
z · (t, z) = (mz t,m) ∈W , thus by above y = m is in W . Thus W = V .
Now if W doesn’t contain (t, z) ∈W with t, z 6= 0, then it’s easy to see W = 0 or y-axis or
x-axis by F -action.

10.2: Problems 13
Since I is nilpotent, we assume Ir = 0. By ψ̄ is onto, any n + IN ∈ N/IN , we have
m ∈M , s.t. ψ̄(m+ IM) = n+ IN . Thus n+ IN ∈ ψ(M) + IN . By N = ∪n+ IN, n ∈ N ,
we have N = ψ(M) + IN . Thus N = ψ(M) + I(ψ(M) + IN) = ψ(M) + I2N . Keep doing
this, we get N = ψ(M) + IrN = ψ(M). That finishes the proof.

10.3: Problems 23
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Let {Mi}i∈I be a collection of free R-modules, each with basis Ai. We claim that
⊕

i∈IMi

is free over ∪i∈IAi. Letting m
⊕

i∈IMi we know we can write m as a finite sum m =
mi1 + ... + mik with mij ∈ Mij . Furthermore this expression of m is unique since the
coordinates in a direct sum are independent. But each mij has a unique representation
over the basis Aij . Hence we can express m over the basis ∪i∈IAi, and furthermore this
representation of m is unique. This proves the result.

10.3: Problems 27
(a) ϕ1ψ1(a1, a2, ...) = ϕ1(a1, 0, a2, 0, ...) = (a1, a2, ...), i.e. ϕ1ψ1 = 1. Similarly, ϕ2ψ2 = 1.
ϕ1ψ2(a1, a2, ...) = ϕ1(0, a1, 0, a2, 0, ...) = (0, 0, ...), thus ϕ1ψ2 = 0, similarly, ϕ2ψ1 = 0.
And (ψ1ϕ1 + ψ2ϕ2)(a1, a2, ...) = (a1, 0, a3, 0...) + (0, a2, 0, a4, ...) = (a1, a2, a3, ...), thus
ψ1ϕ1 + ψ2ϕ2 = 1.
Now if a1, a2 ∈ R, we assume a1ϕ1 + a2ϕ2 = 0, then a1 = (a1ϕ1 + a2ϕ2)ψ1 = 0, similarly,
a2 = (a1ϕ1 + a2ϕ2)ψ2 = 0, thus ϕ1, ϕ2 are independent. Note to any x ∈ R, we have
(xψ1)ϕ1 + (xψ2)ϕ2 = x. Thus ϕ1, ϕ2 generate R.

(b) By part (a), we have R ∼= R2, and by induction, to any n, we have R ∼= Rn.

10.4: Problems 1
First it’s easy to see s · t ∈ S for any s ∈ S, t ∈ R. Note s · 1 = s× f(1) = s× 1 = s. And
s · (xy) = sf(xy) = sf(x)f(y) = (s · x) · y. So s · r = sf(r) defines a right R-action on S.
And there is a canonical left S-action on S by multiplication. Thus S is a (S,R)-bimodule.

10.4: Problems 7
Any m

d ⊗ t ∈ Q⊗R N , since Q is also an R-module, we have m
d ⊗ t = m(1d ⊗ t) = 1

d ⊗m · t.
And d ∈ R,m · t ∈ N . That finishes the proof.

10.4: Problems 25
Define f : S ⊗R R[x]→ S[x] by f(s, p(x)) 7→ sp(x). Note by f((s1 ⊗ p1(x))(s2 ⊗ p2(x)) =
f(s1s2 ⊗ p1(x)p2(x)) = s1s2p1(x)p2(x) = f(s1 ⊗ p1(x))f(s2 ⊗ p2(x)). And it’s easy to see
that f(a(s⊗ p(x)) = af(s⊗ p(x)). Thus f is an algebra-homomorphism.
f is onto, since any p(x) ∈ S[x] is in the form of

∑n
i=1 aix

i, then f(
∑n

i=1 ai ⊗ xi) =∑n
i=1 aix

i = p(x).
If f(

∑
ai ⊗ xi) = 0, then

∑
aix

i = 0, thus ai = 0 for each i, thus
∑
ai ⊗ xi = 0, hence f

is injective, thus f is an isomorphism.

10.5: Problems 12
(a) There is a canonical injection Ii : Bi →

⊕
i∈I Bi. Then it induces a map

ϕi : HomR(
⊕
i∈I

Bi, A)→ HomR(Bi, A)
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by sending α 7→ α ◦ Ii. Note HomR(
⊕

i∈I Bi, A) and
∏
iHomR(Bi, A) are abelian groups,

by the universal property of the direct product of abelian groups, there is a homomorphism

Φ : HomR(
⊕
i∈I

Bi, A)→
∏
i

HomR(Bi, A),

s.t. πi ◦ Φ = ϕi, where πi is the ith natural projection from the direct product.
If Φ(a) = 0, then a ◦ Ii = ϕi(a) = πi ◦ Φ(a) = 0, thus a = 0, thus Φ is injective.
To φ =

∏
i φi ∈

∏
iHomR(Bi, A). Define aφ : ⊕IBi → A by aφ(bi) =

∑
φi(bi). It’s easy

to see aφ ∈ HomR(
⊕

i∈I Bi, A). Now πi(Φ(aφ))(b) = ϕi(aφ)(b) = aφ(Ii(b)) = φi(b), thus
Φ(aφ) = φ, thus Φ is onto.
Now to any r ∈ R, Φ(ra) =

∏
i((ra) ◦ Ii) =

∏
i(ra ◦ Ii) = r

∏
i(a ◦ Ii) = rΦ(a), thus Φ is

an R-module homomorphism, hence R-module isomorphism.

(b) We define ϕi : HomR(A,
∏
iBi) → HomR(A,Bi) by ϕi(a) = πi ◦ a. Now by the

universal property of the direct product of abelian groups, there is a homomorphism

Φ : HomR(A,
∏
i

Bi)→
∏
i

HomR(A,Bi)

s.t. πi ◦Φ = ϕi. Similar to part (a), we have Φ is injective and also a R-module homomor-
phism.
Now consider φ =

∏
i φi ∈

∏
iHomR(A,Bi). Define aφ : A

∏
iBi as πiaφ(b) = φi(b).

Clearly, aφ is a homomorphism. πiΦ(aφ)(b) = ϕiaφ(b) = πiaφ(b) = φi(b).Therefore
πiΦ(aφ) = φi, thus Φ(aφ) = φ. Thus Φ is onto, that finishes the proof.

10.5: Problems 16
(a) Since M is an abelian group, thus M is a Z-module, by Corollary 37, M is contained
in an injective Z-module Q.

(b) SinceM ⊂ Q, there is an inclusion i : M → Q, which induces a map i∗ : HomZ(R,M)→
HomZ(R,Q) by composition any φ ∈ HomZ(R,M) to i ◦ φ ∈ HomZ(R,Q).
Any f ∈ HomR(R,M), is also an abelian group homomorphism since R,M are abelian
groups, and an abelian group homomorphism is a Z− module homomorphism, thus f ∈
HomZ(R,M), thus HomR(R,M) ⊂ HomZ(R,M). That finishes the proof.

(c) If M is an R-module, by exercise 10.5.10(b) we have M ∼= HomR(R,M). By (b),
we have M ⊂ HomZ(R,Q). But 10.5.15(c) says that if Q in an injective Z-module,
HomZ(R,Q) is an injective R-module. Hence, we proved that M is contained in an injec-
tive R-module.

10.5: Problems 21
If 0 → A → B → C → 0 is an exact sequence of left S-modules, then by N is flat as an
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S-module, we have:
0→ N ⊗S A→ N ⊗S B → N ⊗S C → 0,

which can be seen as an exact sequence of left R-modules.
By M is a right R-module, we have

0→M ⊗R (N ⊗S A)→M ⊗R (N ⊗S B)→M ⊗R (N ⊗S C)→ 0.

By tensor product associativity, we have:

0→ (M ⊗R N)⊗S A→ (M ⊗R N)⊗S B → (M ⊗R N)⊗S C → 0.

Therefore M ⊗R N is flar as a right S-module.

10.5: Problems 25
(a) There is an exact sequence 0 → I → R → R/I → 0. If A is flat, then 0 → A ⊗R I →
A⊗R R→ A⊗R R/I → 0 is exact, thus A⊗R I → A⊗R R is injective.

(b) (1) Suppose now that the element
∑
ai ⊗R Ii ∈ A⊗R I is mapped to 0 by 1⊗ ψ. This

means that the element
∑
ai ⊗R ψ(Ii), can be written as a sum of generators. Since this

sum of elements is finite, all of the second coordinates of the resulting equation lie in some
finitely generated submodule I ′ of I. Then this equation implies that

∑
ai⊗R Ii ∈ A⊗R I ′

is mapped to 0 in A ⊗R R. Since I ′ is a finitely generated module, the injectivity by as-
sumption shows that

∑
ai ⊗R Ii is 0 in A⊗R I ′ and also in in A⊗R I.

(2) Assume F ∼= Rn, then K ∼= Rn/I, by A⊗ F ∼= An, and K ∼= An/A⊗ I, it’s easy to see
K ∼= An/A⊗ I → An ∼= A⊗ F is injective. (Note by A⊗ R ∼= A, the map A⊗ I → AI is
onto, so now it’s an isomorphism.)

(3) Similar to (1), if the element
∑
ai⊗R ki ∈ A⊗RK is mapped to 0, then by this sum of

elements is finite,
∑
ai⊗R ki is contained in some A⊗RK ′, where K ′ is a sub-module of a

finitely generated free sub-module F ′ ⊂ F (K ′ := K ∩F ′, thus is also contained in K) and
is mapped to 0 ∈ A⊗RF ′, and by (2),

∑
ai⊗Rki = 0 in 0 ∈ A⊗RK ′ and also in in A⊗RK.

(c) For the first diagram, the map g : J → L can be defined as ψ−1 ◦ f (note ψ is in-
jective), and note the image of K in F is just kerf , thus K ⊂ f−1(ψ(L) = J , hence the
map p : K → J (induced by h : K → F ) is the inclusion. Moreover since φ is injective,
kerψ−1◦f = kerf , which is just the image of K in J , thus the top sequence of the first dia-
gram is exact. Note ψ◦g(a) = ψ◦ψ−1 ◦f = fι(a), and ι◦p(a) = ι◦f(a) = p(a) = p◦ id(a).
Thus the first diagram is commutative.
For the second diagram, recall the tensor product is right exact, thus this diagram is com-
mutative with exact rows.
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Now by (b), 1⊗ ι is injective, and by part (d) of exercise 1, 1⊗ ψ is injective, thus by the
definition of flatness, A is flat.

(d) Since F is flat, by (a), F ⊗R I → F ⊗R R ∼= F is injective, thus F ⊗ I ⊂ F ⊗ R is
mapped to FI by f ⊗ i 7→ fi, therefore K as a submodule of F , the image of K ⊗ I is just
KI by the injectivity and k ⊗ i 7→ ki.
Tensor I with the exact sequence 0 → K → F → A → 0, recall tensor product is right

exact, thus we get the exact sequence K⊗I f−→ F⊗I g−→ A⊗I → 0. Note the image of K⊗I
is just KI, thus by exactness A⊗ I = F ⊗ I/kerg = F ⊗ I/Imf = F ⊗ I/K⊗ I = FI/KI.

(1) If FI ∩K = KI, then A ⊗ I = FI/KI = FI/(FI ∩K). Consider the quotient map
φ : F → A and the restriction to FI, which sends

∑
fjij to φ(

∑
fjij) =

∑
φ(fj)ij ∈ AI,

it’s easy to see φ(FI) = AI. Since kerφ = K, we have kerφ|FI = K ∩ FI, thus
FI/(FI ∩K) ∼= (F/K)I = AI, thus A⊗ I ∼= AI, thus A is flat.

(2) If A is flat, then A ⊗ I = AI, thus FI/KI = (F/K)I ∼= FI/(FI ∩ K), hence
FI/KI ∼= FI/(FI ∩K), also note KI ⊂ FI ∩K, thus FI ∩K = KI.
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