Selected problems from Dummit and Foote

Drewseph

1.1: Problems 29

To any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B,\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)=\left(a_{2} a_{1}, b_{2} b_{1}\right)=\left(a_{2}, b_{2}\right)$. $\left(a_{1}, b_{1}\right)$ since A, B are abelian, which leads to $a_{1} a_{2}=a_{2} a_{1}, b_{1} b_{2}=b_{2} b_{1}$. Thus $A \times B$ is abelian.

1.2: Problems 10

There are 8 vertices, so any vertex, say t has 8 potential places to be rotated to. And any vertex adjacent to t, say x has to be rotated to a vertex which is adjacent to the vertex that t rotates to, thus x has 3 places to go. Hence there are exactly $8 \times 3=24$ rigid motions, in other words, $|G|=24$.

1.3: Problems 17

We just need to figure out how many choices we have if we pick up 4 elements for two groups with 2 elements each group. First, if arbitrarily pick up 4 elements, there are $C_{4}^{n}=\frac{n(n-1)(n-2)(n-3)}{4!}=\frac{n(n-1)(n-2)(n-3)}{24}$. Second, if we separate 4 elements into 2 groups with 2 elements each group, then there are $C_{4}^{2} / 2=3$ choices. So there are $C_{4}^{n} \times C_{4}^{2} / 2=\frac{n(n-1)(n-2)(n-3)}{24} \times 3=\frac{n(n-1)(n-2)(n-3)}{8}$ choices.

1.3: Problems 20

$S_{3}=\{(1),(23),(12),(13),(123),(132)\} . \quad$ Note $(123)^{2}=(132),(123)^{3}=(1),(123)(12)=$ $(23),(12)(123)=(13),(123)(23)=(13),(123)(13)=(12),(23)^{2}=(13)^{2}=(12)^{2}=(1)$, also by above we can get: $(123)^{-1}(12)=(12)(123)$
Since (12), (123) can generate any elements, we can set the generators can be (12), (123). The relations are $(12)^{2}=(1),(123)^{3}=(1),(123)^{-1}(12)=(12)(123)$.

1.4: Problems 11

(a)

By $X Y=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & d+a & e+a f+b \\ 0 & 1 & f+c \\ 0 & 0 & 1\end{array}\right)$,
we get $H(F)$ is closed under matrix multiplication.

Since $Y X=\left(\begin{array}{ccc}1 & d+a & e+d c+b \\ 0 & 1 & f+c \\ 0 & 0 & 1\end{array}\right)$,
and we may not always have $a f=d c$, thus we may not always have $X Y=Y X$. For example, for the case that $a=b=c=1, d=e=1, f=2$.
(b)

By the expression of $X Y$, we know that if $X Y=i d$, then we have $d+a=f+c=$ $e+a f+b=0$, i.e. $d=-a, f=-c, e=a c-b$, i.e.

$$
X^{-1}=\left(\begin{array}{ccc}
1 & -a & a c-b \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right)
$$

(c)

Define $Z:=\left(\begin{array}{ccc}1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1\end{array}\right)$, then $(X Y) Z=\left(\begin{array}{ccc}1 & d+a & e+a f+b \\ 0 & 1 & f+c \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1\end{array}\right)$
$=\left(\begin{array}{ccc}1 & d+a+g & h+e+a f+b+(d+a) i \\ 0 & 1 & f+c+i \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & d+g & e+d i+h \\ 0 & 1 & f+i \\ 0 & 0 & 1\end{array}\right)=\mathrm{X}(\mathrm{YZ})$.
So $H(F)$ satisfies the associative law, thus $H(F)$ is a group. Since each element has three entries, each entry can have $|F|$ choices, thus $|H(F)|=|F|^{3}$.
(d)

When $F=\mathbb{Z} / 2 \mathbb{Z}$, each entry can only be 0 or 1 . Obviously, the order of the identity is 1 .
By $X X=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 2 a & 2 b+a c \\ 0 & 1 & 2 c \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & a c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
thus any non-trivial element with $a=0$ or $c=0$ is of order 2 , therefore the order of
$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is 2.
$\left(\begin{array}{lll}1 & 1 & b \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{4}=\left(\begin{array}{lll}1 & 1 & b \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{2}\left(\begin{array}{lll}1 & 1 & b \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{2}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=i d$.
Thus $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ has order 4.
(e)

By $X Y=\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & d+a & e+a f+b \\ 0 & 1 & f+c \\ 0 & 0 & 1\end{array}\right)$,
we know the middle entry of the first row of $X Y$ is the sum of the middle entry of the first row of X and the middle entry of the first row of Y. Thus to any $X=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right) \in H(\mathbb{R})$, the middle entry of the first row of X^{n} is na. Similarly, the right entry of the second row of X^{n} is $n c$. It means if X has finite order, then $a=c=0$, so if X has finite order, then $X=\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. By the expression of $X Y$, we can get $\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & e \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & e+b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, which implies $\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)^{n}=\left(\begin{array}{ccc}1 & 0 & n b \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, it means if X has finite order then $X=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. So every nonidentity element of the group $H(\mathbb{R})$ has infinite order.

1.5: Problems 3

By the relations, we can get $Q_{8}=<i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j=k, j i=-k, j k=i, k j=$ $-i, k i=j, i k=-j>$

1.6: Problems 25

(a) We just need to prove, to any unit vector h, the matrix rotates the unit vector about the origin in a counterclockwise direction by θ radians. Without losing the generality, we may just assume the unit vector to be $(1,0)^{T}$, which lies on the positive half x-axis. Then $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \cdot h^{T}=\binom{\cos \theta}{\sin \theta}$, which is the unit vector with the angle θ with the positive half x-axis. So the matrix rotates the unit vector h^{T} about the origin in a counterclockwise direction by θ radians.
(b) By the words at the bottom of P.38, we just need to verify that the relations are kept in the image of the generators. So just need to verify if $\phi(r)^{n}=i d, \phi(s)^{2}=i d$, $(\phi(s) \phi(r))^{2}=i d$.
First, $\phi(s)^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=i d$.
Second, note $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \cdot\left(\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right)=\left(\begin{array}{cc}\cos \theta \cos \beta-\sin \theta \sin \beta & -\cos \theta \sin \beta-\sin \theta \cos \beta \\ \cos \theta \sin \beta+\sin \theta \cos \beta & \cos \theta \cos \beta-\sin \theta \sin \beta\end{array}\right)$ $=\left(\begin{array}{cc}\cos (\theta+\beta) & -\sin (\theta+\beta) \\ \sin (\theta+\beta) & \cos (\theta+\beta)\end{array}\right)$, it implies that $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)^{n}=\left(\begin{array}{cc}\operatorname{cosn} \theta & -\operatorname{sinn} \theta \\ \operatorname{sinn} \theta & \operatorname{cosn} \theta\end{array}\right)=$
$i d$, in other words, $\phi(r)^{n}=i d$.
Third, $(\phi(s) \phi(r))^{2}=\left(\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & -\sin \theta\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=i d$. That finishes the proof.
(c) $\operatorname{By}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \cdot\left(\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right)=\left(\begin{array}{cc}\cos (\theta+\beta) & -\sin (\theta+\beta) \\ \sin (\theta+\beta) & \cos (\theta+\beta)\end{array}\right)$ it implies that $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)^{m}=\left(\begin{array}{cc}\cos m \theta & -\sin m \theta \\ \sin m \theta & \cos m \theta\end{array}\right)$. Thus by the definition of $\theta, \phi\left(\theta^{m}\right)=\phi(\theta)^{m}=i d$ iff $m=n$. And $\phi\left(r^{m} s\right)=\phi\left(r^{m}\right) \phi(s)=\left(\begin{array}{cc}\operatorname{cosm} \theta & -\sin m \theta \\ \operatorname{sinm} \theta & \operatorname{cosm} \theta\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}-\operatorname{sinm} \theta & \operatorname{cosm} \theta \\ \operatorname{cosm} \theta & \sin m \theta\end{array}\right)$, which is never trivial. And recall $D_{2 n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, \ldots, r^{n-1} s\right\}$, thus only $\phi(1)=i d$. Thus ϕ is injective.

1.7: Problems 12

Define the set consisting of pairs of opposite vertices of a regular n-gon as A. By the definition of group action, we need to show any $h, g \in D_{2 n}, a \in A, g \cdot a \in A, 1 \cdot a=a$, $h \cdot(g \cdot a)=(g h) \cdot a$.
Since 1 doesn't make any change to the n-gon, thus $1 \cdot a=a$, for any $a \in A$. And any element of A is a combination of s, r, thus in order to show $g \cdot a \in A$, we just need to show $s \cdot a \in A, r \cdot a \in A$. We may define the vertices clockwise as $0,1,2, \ldots, n-1$. Let the $n / 2$ pairs of opposite vertices defined to be $a_{i}:=\{i, i+n / 2\}, 0 \leq i<n / 2$. If we define $r(j)=j-1 \bmod n$ with $0 \leq j \leq n-1$, then we get $r(i)=i-1$, if $i \geq 1$ and $r(0)=n-1$. Then to any pair $(i, i+n / 2)$ with $0<i<n / 2, r(i)=i-1, r(i+n / 2)=$ $i-1+n / 2$, i.e. $r(i, i+n / 2)=(i-1, i-1+n / 2)=a_{i-1} \in A$. $\operatorname{To}(0, n / 2), r(0)=n-1$, $0<r(n / 2)=n / 2-1<n / 2$, thus $r(0, n / 2)=(n / 2-1, n-1) \in A$. Thus we can conclude $r\left(a_{i}\right)=a_{i-1} \bmod n / 2$. And we define the reflection is about the line connecting vertices 0,3, thus $s(j)=-j \bmod n$, thus to any $a_{i}, s(i)=-i \bmod n=n-i, s(i+n / 2)=n / 2-i$, thus $s\left(a_{i}\right)=(n / 2-i, n-i)=a_{-i} \bmod n / 2$. Thus we have proved $s \cdot a \in A, r \cdot a \in A$ for any $a \in A$, therefore $g \cdot a \in A$, for any $g \in D_{2 n}, a \in A$.
Since any $g \in D_{2 n}$ is in the form of $r^{i} s^{j}$, we just need to show $\left(r^{a} s^{b}\right) \cdot\left(\left(r^{x} s^{y}\right) \cdot a_{i}\right)=$ $\left(\left(r^{a} s^{b}\right)\left(r^{x} s^{y}\right)\right) \cdot a_{i}$. Indeed, by computation, we can get
$\left(\left(r^{a} s^{b}\right)\left(r^{x} s^{y}\right)\right) \cdot a_{i}=\left(r^{a+(-1)^{b} x} s^{b+y}\right) \cdot a_{i}=a_{-1^{y+b} i+(-1)^{b+1} x-a} \bmod n / 2=r^{a} s^{b} \cdot a_{-1^{y} i-x} \bmod n / 2$
Thus it is an action.
Since $r^{x} s^{y} \cdot a_{i}=a_{-1^{y} y_{-x} \bmod n / 2}$, thus if $r^{x} s^{y} \cdot a_{i}=a_{i}$, then $x=n / 2,0, y=0$, if $y=1$, then x depends on i, thus if $r^{x} s^{y} \cdot a_{i}=a_{i}$ for any i, then $y=0, x=n / 2,0$. In other words, kernel is $\left\{r^{0}=1, r^{n / 2}\right\}$.

1.7: Problems 20

Note tetrahedron has 4 vertices, say $1,2,3,4$, so any element from the group of rigid motions (say G) can be seen as a permutation of the 4 vertices, thus it can be seen as an
element of S_{4}. Thus it induces a map $\phi: G \rightarrow S_{4}$ Given $g, h \in G, \phi(g h)$ denotes the permutation resulting from performing h and then g. This is the same as performing the rigid motion h first, writing down the permutation $\phi(h)$, then performing the rigid motion g, writing down the permutation $\phi(g)$, and then multiplying the permutations $\phi(g) \phi(h)$. In other words, ϕ is a group homomorphism. Since different rigid motions are mapped to different permutations by definition, thus ϕ is injective, thus ϕ induces an isomorphism between G and a subgroup of S_{4}.

2.1: Problems 15

$\cup_{i=1}^{\infty} H_{i}$. And to any $a \in \cup_{i=1}^{\infty} H_{i} \neq \emptyset$, since $\emptyset \neq H_{i} \subset \cup_{i=1}^{\infty} H_{i}$. To any $a, b \in \cup_{i=1}^{\infty} H_{i}$ exists i, j s.t. $a \in H_{i}, b \in H_{j}$. Without losing generality, we may assume $i \leq j$, thus $H_{i} \subset H_{j}$. Thus $a, b, b^{-1}, a^{-1} \in H_{j}$, thus $a b^{-1}, b a^{-1} \in H_{j} \subset \cup_{i=1}^{\infty} H_{i}$. By the criterion of the subgroup, $\cup_{i=1}^{\infty} H_{i}$ is a subgroup of G.

2.2: Problems 10

(1) Assume $H=\{1, h\}$. If $g \in N_{G}(H)$, then $g 1 g^{-1}=g g^{-1}=1$, $g h g^{-1} \in H$, note $g h g^{-1} \neq 1$, since otherwise, $g h=g$, which implies $h=1$, contradiction. Therefore $g h g^{-1}=h$. Hence, if $g \in N_{G}(H)$, then $g \in C_{G}(H)$, thus $N_{G}(H) \subset C_{G}(H)$. And by definition of $C_{G}(H)$, to any $g \in C_{G}(H)$, since $g 1 g^{-1}, g h g^{-1}=h$, we have $g H g^{-1}=H$, thus $C_{G}(H) \subset N_{G}(H)$, thus $C_{G}(H)=N_{G}(H)$.
(2) Since $C_{G}(H)=N_{G}(H)=G$, any $g \in G$, $g h g^{-1}=h$, i.e. $g h=h g$. thus $h \in Z(G)$ and $1 \in Z(G)$, thus $H \leq Z(G)$.

2.3: Problems 13

(1) Note $(0,1) \in \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, has order $2((0,1)+(0,1)=(0,2)=(0,0))$. While, in \mathbb{Z}, no element has finite order, while order is kept under isomorphism, thus $\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is not isomorphic to \mathbb{Z}.
(2) Similarly, $(0,1) \in \mathbb{Q} \times \mathbb{Z} / 2 \mathbb{Z}$, has order 2 , however, in \mathbb{Q}, no element has finite order, while order is kept under isomorphism, thus $\mathbb{Q} \times \mathbb{Z} / 2 \mathbb{Z}$ is not isomorphic to \mathbb{Q}.

2.3: Problems 21

Note $\binom{p^{n-1}}{r}$ is an integer, thus by Binomial Theorem, $(1+p)^{p^{n-1}}=1+\binom{p^{n-1}}{1} p+\binom{p^{n-1}}{2} p^{2}+$ $\cdots+\binom{p^{n-1}}{n} p^{n}+\cdots+p^{p^{n-1}} \equiv 1+\binom{p^{n-1}}{1} p+\binom{p^{n-1}}{2} p^{2}+\cdots+\binom{p^{n-1}}{n-1} p^{n-1} \bmod p^{n}$. Note $\binom{p^{n-1}}{r} p^{r}=\frac{p^{n-1}\left(p^{n-1}-1\right) \ldots\left(p^{n-1}-r+1\right)}{r(r-1) \ldots 1} p^{r}$. It can be proved that, when prime $p>2$, then $p^{n-r} \left\lvert\,\binom{ p^{n-1}}{r}\right.$, thus $p^{n} \left\lvert\,\binom{ p^{n-1}}{r} p^{r}\right.$, thus $1+\binom{p^{n-1}}{1} p+\binom{p^{n-1}}{2} p^{2}+\binom{p^{n-1}}{n-1} p^{n-1} \equiv 1 \bmod p^{n}$. Therefore $(1+p)^{p^{n-1}} \equiv 1 \bmod p^{n}$.
Similarly, $(1+p)^{p^{n-2}}=1+\binom{p^{n-2}}{1} p+\binom{p^{n-2}}{2} p^{2}+\cdots+\binom{p^{n-2}}{n} p^{n}+\cdots+p^{p^{n-2}} \equiv 1+\binom{p^{n-2}}{1} p+$
$\binom{p^{n-2}}{2} p^{2}+\cdots\binom{p^{n-2}}{n-1} p^{n-1} \bmod p^{n}$. And it can be proved that when prime $p>2$, then $p^{n} \left\lvert\,\binom{ p^{n-2}}{r} p^{r}\right.$, thus $(1+p)^{p^{n-2}} \equiv 1+\binom{p^{n-2}}{1} p \bmod p^{n} \equiv 1+p^{n-1} \bmod p^{n}$.Thus $(1+p)^{p^{n-2}} \not \equiv 1$ $\bmod p^{n}$.
Note $\mathbb{Z} / p^{n} \mathbb{Z}^{*} \cong \mathbb{Z} / p^{n-1}(p-1) \mathbb{Z}$, thus the order of $1+p$ divides $p^{n-1}(p-1)$. By above, we have the order of $1+p$ divides p^{n-1} (it implies the order is in the form of p^{t}), but not p^{n-2}. Thus the order of $1+p$ is in the form of p^{t}, but $t>n-2$, since otherwise by $p^{t} \mid p^{n-2}$, we have $(1+p)^{p^{n-2}} \equiv 1 \bmod p^{n}$, contradiction. Thus the order of $1+p$ is p^{n-1}.

2.4: Problems 17

(a) This part is direct from 2.1: Problems 15.
(b) Since C is a nontrivial chain thus H is non-trivial. We need to show $H \neq G$: If not, each g_{j} must lie in H and so must lie in some element of the chain C. Then we have at most n elements in the chain with each one contains a g_{j}, and we can select the largest group say $T \subset H$, s.t. $g_{1}, \ldots g_{n} \in T$. Then $T=G$. Thus T is not proper, contradiction. Hence $H \neq G$, thus H is proper.
(c) To any chain C of proper subgroups with oder via inclusion, we have a upperbound H. H is the upperbound since by (b) H is proper,and by (a), any elements is included in H. Thus by Zorn's Lemma, S has a maximal element.

2.5: Problems 14

Solution: (1) Since the order of v is 8 by the presentation, it's immediately to get $\langle v\rangle \cong$ \mathbb{Z}_{8}. By $v u=u v^{5}$, we have $v u v^{5}=u v^{10}=u v^{2}$, thus $v(v u)=u v^{2}$, i.e. $v^{2} u=u v^{2}$, in other words, v^{2}, u commutes, thus $\left\langle u, v^{2}\right\rangle$ is abelian. Also u, v^{2} are generators in $\left\langle u, v^{2}\right\rangle$ with order 2 and 4 respectively. Thus $\left.<u, v^{2}\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Note $(u v)^{2}=u(v u) v=u\left(u v^{5}\right) v=u^{2} v^{6}=v^{6}$, which has order 4, thus $u v$ has order 8. Thus $\langle u v\rangle \cong \mathbb{Z}_{8}$.
(2) By $v u=u v^{5}$, the elements of M are in the form of v^{i} or $u v^{j}$, we may use them to determine the subgroups.
Note $\left(u v^{2}\right)^{2}=u\left(v^{2} u\right) v^{2}=u^{2} v^{2} v^{2}=v^{4}$, Thus $<u v^{2}>$ is cyclic with order 4. Observe $<u v^{2}>\ni\left(u v^{2}\right)^{3}=u v^{6}$, thus $<u v^{2}>=<u v^{6}>$.
Note $\left(u v^{4}\right)^{2}=1$, thus $\left\langle u v^{4}\right\rangle$ is a group of order 4, contained in the group $\left\langle u, v^{4}\right\rangle$ with order 4.
Note $(v u)^{2}=\left(u v^{5}\right)^{2}=v^{6}$, thus $<v u>$ has a subgroup $<v^{6}>$ with order 4, and $<v^{6}>$ has a subgroup $\left\langle v^{4}\right\rangle$ of order 2 .
Note $(u v)^{2}=u(v u) v=u\left(u v^{5}\right) v=v^{6}$, which has order 4, thus the order of $u v$ is 8 , hence $<u v>$ has order 8 . Thus $\langle u v\rangle=(v u\rangle$, similarly, for $u v^{3}, u v^{7}$.
Now it's easy to see that $\langle v\rangle$ has subgroups $\left\langle v^{2}\right\rangle$ with order $4,\left\langle v^{4}\right\rangle$ with order 2. $\left\langle u, v^{2}\right\rangle$ has 3 possible proper subgroups generated by $\left.u,\left(v^{2}\right)^{i}, i \neq 4:<u, v^{4}\right\rangle,<$ $\left.u v^{2}\right\rangle=\left\langle u v^{6}\right\rangle,\left\langle u, v^{6}\right\rangle$, however, $\left\langle u, v^{6}\right\rangle=\left\langle u, v^{2}\right\rangle$. And $\left\langle u v^{2}\right\rangle$ is a cyclic group with order 2 with subgroup $\left\langle v^{4}\right\rangle$.

So the lattice of subgroups of M is:

So we can conclude that the lattice of subgroups of M is the same as the lattice of subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$. But they are not isomorphic since $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$ is abelian while M is not abelian as $u v \neq v u$.

3.1: Problems 34

Solution: (a) Recall, the elements of $D_{2 n}$ are in the form of $r^{j}, s r^{i}$. To any element $\left(r^{k}\right)^{i} \in<r^{k}>$, we have $\left.r^{j}\left(\left(r^{k}\right)^{i}\right)^{(} r^{j}\right)^{-1}=\left(r^{k}\right)^{i}$. And $s r^{i}\left(r^{k}\right)^{i}\left(s r^{i}\right)^{-1}=s r^{i}\left(r^{k}\right)^{i} r^{-i} s^{-1}=$ $s\left(r^{k}\right)^{i} s=r^{-i k}=r^{n-k i}$. Since $i|n, i|(n-k i)$, thus $r^{n-k i}=\left(r^{k}\right)^{j}$ for some j, therefore $s r^{i}\left(r^{k}\right)^{i}\left(s r^{i}\right)^{-1} \in<r^{k}>$. Thus $<r^{k}>$ is normal.
(b) Note any $x \in D_{2 n} /_{-}<r^{k}>$ is in the form of $\overline{r^{j}}, \overline{s r^{i}}=s r^{i}$. Thus there are exactly k elements in the form of $\overline{r^{j}}$, and k elements in the form of $s r^{i}$. It also implies that the generators are \bar{r} and \bar{s}. And it's easy to see $\bar{r}^{k}=1, \bar{s}^{2}=1$. Also $\bar{r} \bar{s}=\overline{r s}=\overline{s r^{-1}}=\bar{s} r^{-1}=\bar{s} \bar{r}^{-1}$. Thus $D_{2 n} /<r^{k}>$ and $D_{2 k}$ have the same presentation, thus they are isomorphic.

3.1: Problems 41

Solution: (1) Any element $[x, y]:=x y x^{-1} y^{-1}$ has inverse $[y, x]$. And to any $\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]$, $\left[c_{1}, d_{1}\right] \ldots\left[c_{m}, d_{m}\right] \in N,\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]\left(\left[c_{1}, d_{1}\right] \ldots\left[c_{m}, d_{m}\right]\right)^{-1}=\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]\left[d_{m}, c_{m}\right] \ldots\left[d_{1}, c_{1}\right] \in$ N, thus N is a subgroup.
To any $x:=\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right] \in N$, and $g \in G, g x g^{-1}=g\left[a_{1}, b_{1}\right] g^{-1} g \ldots g^{-1} g\left[a_{n}, b_{n}\right] g^{-1} \in N$, since $g\left[a_{i}, b_{i}\right] g^{-1}=g a_{i} b_{i} a_{i}^{-1} b_{i}^{-1} g^{-1}=g a_{i} g^{-1} g b_{i} g^{-1} g a_{i}^{-1} g^{-1} g b_{i}^{-1} g^{-1}=\left[g a_{i} g^{-1}, g b_{i} g^{-1}\right]$.
(2) To any $\bar{x}, \bar{y} \in G / N$, we have $\bar{x} \bar{y}=\overline{x y}=\overline{x y} \cdot \overline{1}=\overline{x y} y^{-1} x^{-1} y x=\overline{x y y^{-1} x^{-1} y x}=\overline{y x}=\bar{y} \bar{x}$. Therefore $\bar{x} \bar{y}=\bar{y} \bar{x}$. Thus G / N is abelian.

3.1: Problems 42

To any $x \in H, y \in K, x y x^{-1} y^{-1}=\left(x y x^{-1}\right) y^{-1} \in K$, since by K is normal, $\left(x y x^{-1}\right) \in K$, thus $\left(x y x^{-1}\right) y^{-1} \in K$. Similarly, by H is normal, $y x^{-1} y^{-1} \in H$, thus $x y x^{-1} y^{-1} \in H$, thus $x y x^{-1} y^{-1} \in H \cap K=1$, i.e. $x y x^{-1} y^{-1}=1, x y=y x$.

3.2: Problems 11

Assume $G=\coprod_{i \in I} g_{i} K, K=\coprod_{j \in J} k_{j} H$. Then $|I|=[G: K],|J|=[K: H]$. So $G=\cup_{i, j} g_{i} k_{j} H$. If $g_{i} k_{j} H \cap g_{m} k_{n} H \neq \emptyset$, then there is an $h \in H$, s.t. $g_{i} k_{j}=g_{m} k_{n} h$, so $g_{i}=g_{m}\left(k_{n} h k_{j}^{-1}\right) \in g_{m} K$, thus $g_{i} K \cap g_{m} K \neq \emptyset$, contradiction. Therefore $G=\coprod_{i, j} g_{i} k_{j} H$, thus $[G: H]=|I||J|$, i.e. $[G: H]=[G: K][K: H]$.

3.2: Problems 19

If there is a subgroup H with $|H|$ and $|G: N|$ are relatively prime. To any $h \in H$, we consider $h N \in G / N$. Note since N is normal, G / N is a group with order $|G / N|$. Thus the order of $h N$ divides $|G / N|$. Also the order of $h N$ divides H. Since $|H|$ and $|G: N|$ are relatively prime, we get the order of $h N$ has to be 1 , which implies that $h \in N$, hence $H<N$. Now if there is a group H with order N, then we get $|H|=|N|$ and $|G: N|$ are relatively prime, since by assumption $(|N|,[G: N])=1$, thus $H<N$ by we just proved, and since $|H|=|N|$, we have $H=N$.

3.3: Problems 1

Consider the homomorphism det : $G L_{n}(F) \rightarrow F^{*}$, which is onto since to any $a \in F^{*}$, the matrix $\left(a_{i, j}\right)$ with $a_{i . j}=0$ if $i \neq j$, and $a_{i, j}=1$ if $i=j \neq 1$, and $a_{1,1}=a$, would be mapped to a by det. And the kernel is just $S L_{n}(F)$. Thus $\left|G L_{n}(F) / S L_{n}(F)\right|=\left|F^{*}\right|=q-1$.

3.3: Problems 7

Since $G=M N$, thus any $g \in G$ can be expressed as $a b$ with $a \in M, b \in N$. And $a b / M=$ $\bar{b}, a b / N=\bar{a}$. Consider the homomorphism $f: G \rightarrow(G / M) \times(G / N)$, by $f(g) \mapsto(g M \times g N)$. This is onto since to any $(a M \times b N) \in(G / M) \times(G / N)$, we may assume $a=m n, b=m^{\prime} n^{\prime}$ with $m, m^{\prime} \in M, n, n^{\prime} \in N$. Then $a M=n M, b N=m^{\prime} N$. Thus $m^{\prime} n \in M N=G$. Observe $f\left(m^{\prime} n\right)=\left(n M \times m^{\prime} N\right)=(a M \times b N)$. So we have shown that f is onto. And the kernel is exactly $M \cap N$.Thus $G /(M \cap N) \cong G / M \times G / N$.

3.4 Problem 11

Since H is a subgroup of the solvable group G, H is also solvable. By the alternative definition of solvable group we can get that there exists an n such that

$$
H=H^{(0)}>H^{(1)}>H^{(2)}>H^{(3)}>\ldots H^{(n)}=1
$$

where $H^{(i+1)}$ is the commutator subgroup of $H^{(i)}$, also by 3.1 problem $41, H^{(i+1)}$ is the normal subgroup of $H^{(i)}$, with $H^{(i)} / H^{(i+1)}$ abelian. Thus $H^{(n-1)}$ is a non-trivial abelian subgroup of G. We need to show $H^{(1)}$ is a normal subgroup of G.
Note by $H \unlhd G$, to any $g \in G, h \in H, h g h^{-1} \in H$. Thus to any $x=\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \ldots\left[a_{n}, b_{n}\right] \in$ $H^{(1)}, g x g^{-1}=g\left[a_{1}, b_{1}\right] g^{-1} g\left[a_{2}, b_{2}\right] g^{-1} \ldots g\left[a_{n}, b_{n}\right] g^{-1} \in H^{(1)}$ since each $g\left[a_{i}, b_{i}\right] g^{-1}=$

$$
g a_{i} b_{i} a_{i}^{-1} b_{i}^{-1} g^{-1}=\left(g a_{i} g^{-1}\right)\left(g b_{i} g^{-1}\right)\left(g a_{i}^{-1} g^{-1}\right)\left(g b_{i}^{-1} g^{-1}\right)=[c, d] \in H^{(1)}
$$

where $c=\left(g a_{i} g^{-1}\right), d=\left(g b_{i} g^{-1}\right)$. Therefore $H^{(1)} \unlhd G$, now replace H by $H^{(1)}, H^{(1)}$ by $H^{(2)}$, and repeat the procedure above, we get $H^{(2)} \unlhd G$. Now we keep the procedure above to $H^{(i)}$, we can get $H^{(n-1)} \unlhd G$. So $H^{(n-1)}$ is the required A.

3.5 Problem 9

By checking the lattice of group A_{4} on p.111, we can see the only subgroup with order 4 is $<(12)(34),(13)(24)>$. Note the conjugate groups have the same order, so by $<(12)(34),(13)(24)>$ is the unique subgroup with order 4 we get $\langle(12)(34),(13)(24)\rangle$ doesn't have conjugate groups, thus $<(12)(34),(13)(24)>$ is normal. Note (12)(34) and (13)(24) can not generate each other and they both have order 2, also (12)(34)(13)(24)= (14)(23), which has order 2 , thus there are 3 elements with order 2 , thus we get $<$ $(12)(34),(13)(24)>\cong V_{4}$.

3.5 Problem 17

There are 4 cases for x, y :
(1): $x=y$, then $\langle x, y\rangle=\langle x\rangle \cong \mathbb{Z}_{3}$, since it's generated by a 3 -cycle.
(2): $x=(a b c), y=(d e f)$, where a, b, c, e, e, f are different. Thus $x y=y x$ and $<x>\cap<$ $y>=(1)$, i.e. $\langle x, y\rangle \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
(3): $x=(a b c), y=(a b d)$. Thus We can embed $\left\langle x, y>\right.$ into A_{4} by $x \mapsto(123), y \mapsto(124)$.

But $(123)^{2}=(132),(124)^{2}=(142),(123)(124)=(13)(24),(124)(123)=(14)(23)$, thus $<(13)(24),(14)(23)\rangle$ is a proper subgroup of $\langle x, y\rangle$ with order 4 , by checking the lattice of group A_{4} on p.111, A_{4} doesn't have proper subgroups with order larger than 4, thus $\langle(123)(124)\rangle=A_{4}$, thus $\langle x, y\rangle \cong A_{4}$.
(4): $x=(a b c), y=(c d e)$, then we can embed $\langle x, y\rangle$ into A_{5} by $x \mapsto(123), y \mapsto(345)$. Note $x y=(a b c d e)$ and $(x y) x(x y)^{-1}=(b c d),(x y) y(x y)^{-1}=(d e a),(x y)(d e a)(x y)^{-1}=$ $(e a b)$. And $\{x, y,(e a b),(b c d),(d e a)\} \subset<x, y>$ can generate all the 3 -cycles in A_{5} (by taking each element of the 5 ones, say z, to z^{2}, we get 5 more 3 -cycles, then with the initial 5 ones, we get all 10 distinct 3 cycles of A_{5}) while A_{n} is generated by its 3 -cycles, thus $\langle x, y\rangle \cong A_{5}$.

4.1 Problem 2

To any $g \in G_{a}, \sigma g \sigma^{-1}(\sigma(a))=\sigma g(a)=\sigma(a)$, i.e. $\sigma g \sigma^{-1} \in G_{\sigma(a)}$, thus $\sigma G_{a} \sigma^{-1} \subset G_{\sigma(a)}$. Conversely, any $g \in G_{\sigma(a)}, \sigma^{-1} g \sigma(a)=\sigma^{-1}(\sigma(a))=a$, so $h:=\sigma^{-1} g \sigma \in G_{a}$ and $g=$ $\sigma h \sigma^{-1} \in \sigma G_{a} \sigma^{-1}$, hence $G_{\sigma(a)} \subset \sigma G_{a} \sigma^{-1}$, so $G_{\sigma(a)}=\sigma G_{a} \sigma^{-1}$.
$\bigcap_{\sigma \in G} \sigma G_{a} \sigma^{-1}=\bigcap_{\sigma \in G} G_{\sigma(a)}$. Since G acts transitively, $\sigma(a)$ goes through each element of A, then any element in the intersection must fix each element of A, thus the element has to be identity, i.e.

$$
\bigcap_{\sigma \in G} \sigma G_{a} \sigma^{-1}=\bigcap_{\sigma \in G} G_{\sigma(a)}=1
$$

4.1 Problem 7

(a) To any $g \in G_{a}$, since $a \in B, g(B) \cap B \neq \emptyset$, and by the definition of B, either $g(B)=B$ or $g(B) \cap B=\emptyset$, thus $g(B)=B$, hence $g \in G_{B}$, so $G_{a} \subset G_{B}$. And to any $h \in G_{B}$, $h(B)=B$, which implies that $B=h^{-1}(B)$, thus $h^{-1} \in G_{B}$, thus to any $h, g \in G_{B}$, $g h^{-1}(B)=g(B)=B$, i.e. $g h^{-1} \in G_{B}$, thus G_{B} is a subgroup of G containing G_{a}.
(b) First we need to show they are pairwise disjoint. To any $\sigma_{i}(B), \sigma_{j}(B)$, if $c=\sigma_{i}(x)=$ $\sigma_{j}(y)$, where $x, y \in B$. Then $\sigma_{j}^{-1} \sigma_{i}(x)=y \in B$, thus $\sigma_{j}^{-1} \sigma_{i}(B)=B$. Hence any $x \in B$, $\sigma_{j}^{-1} \sigma_{i}(x) \in B$, (assume $\sigma_{j}^{-1} \sigma_{i}(x)=y$) i.e. $\sigma_{i}(x)=\sigma_{j}(y) \in \sigma_{j}(B)$, i.e. $\sigma_{i}(B) \subset \sigma_{j}(B)$. Similarly, we can get $\sigma_{j}(B) \subset \sigma_{i}(B)$, hence $\sigma_{i}(B)=\sigma_{j}(B)$, contradiction, so they are pairwise disjoint.

Now we need to show $A=\bigcup_{i=1}^{n} \sigma_{i}(B)$. Since G is a transitive action, any $a \notin B, b \in B$, there exists $g \in G$, s.t. $g(b)=a$, thus $a \in g(B)$, and $g(B)$ as an image of B, should be equal to one of the $\sigma_{i}(B)$, therefore $a \in \bigcup_{i=1}^{n} \sigma_{i}(B)$, thus $A=\bigcup_{i=1}^{n} \sigma_{i}(B)$. And by the last paragraph, it's a disjoint union, thus they are a partition of A.
(c) (1) For S_{4} on A, it's easy to see A and the sets of size 1 are blocks, and to any set B of size two, without losing generality, we may assume that $B=\{1,2\}$, then (23) $\cdot B=\{1,3\}$, which has an intersection with B but not equal to B, thus B is not a block, therefore any set of size two is not a block. Similarly, to any set B of size three, without losing generality, we may assume that $B=\{1,2,3\}$, then (34) $\cdot B=\{1,2,4\}$, which has an intersection with B but not equal to B, thus B is not a block, therefore any set of size three is not a block. So we can conclude that S_{4} is primitive on A.
(2) Any two diagonal vertices of the square is a block: (without losing generality, we name the 4 vertices as $1,2,3,4$ and $(1,3),(2,4)$ are two pairs of diagonal vertices, now we focus on $(1,3)$) since the rotations with angle 90,270 degrees would send $(1,3)$ to $(2,4)$; the rotation with 180 degrees would send $(1,3)$ to itself. The refection about the line connecting 1,3 would send $(1,3)$ to itself and the other 3 would send $(1,3)$ to $(2,4)$, therefore we get $(1,3)$ is a non-trivial block, thus D_{8} is not primitive as a permutation group on the four vertices of a square.
(d) If for each $a \in A$ the only subgroups of G containing G_{a} are G_{a} and G. Then there are no non-trivial blocks: Assume B is a non-trivial block. We can find an $a \in A$, s.t. $a \in B$, then by (a), we have G_{B} is a subgroup of G containing G_{a}, thus by assumption, $G_{B}=G$ or G_{a}. If $G_{B}=G$, then by G is transitive, to any $b \notin B$, there is a $g \in G$, s.t. $g(a)=b$, thus $g(B) \neq B$, contradiction. So $G_{B}=G_{a}$. Now since B is non-trivial, we can always find $b \in B, b \neq a$, so $G_{b}=G_{B}=G_{a}$. Since G is transitive, there exists a $g \in G$, s.t. $g(b)=a$. So $g \notin G_{b}=G_{B}$, but as B is a block and $g(B) \cap B \neq \emptyset$, thus $g(B)=B$, thus $g \in G_{B}$,
which is a contradiction. So there are no non-trivial blocks.

Conversely, now we assume the transitive group G is primitive on A. Assume there is a subgroup H strictly containing some G_{a} for some $a \in A$. Define $B:=\{h(a) \mid h \in H\}$. To any $g \in H, t \in B, t=h(a)$ for some $h \in H$, then $g(t)=g h(a) \in B$, thus $g(B) \subset B$, similarly, $g^{-1}(B) \subset B$, so $B \subset g(B)$, hence $g(B)=B$. Now to any $g \in G, \notin H$, if $c \in g(B) \cap B$, we may assume $g\left(h_{1}(a)\right)=c=h_{2}(a)$, where $h_{i} \in H$, thus $h_{2}^{-1} g h_{1} \in G_{a} \subset H$, thus $g h_{1} \in H$, hence $g \in H$, contradiction, thus to any $g \in G, \notin H, g(B) \cap B=\emptyset$. Therefore B is a block. Note, since H contains some elements not in $G_{a}, B \neq\{a\}$. Thus by assumption, $B=A$, therefore any $g \in G$, there exists some $h \in H$, s.t. $g a=h a$, thus $h^{-1} g \in G_{a}$, thus $g \in H G_{a}=H$, so $G \subset H$, i.e. $H=G$. Thus for each $a \in A$ the only subgroups of G containing G_{a} are G_{a} and G.

4.2 Problem 11

(1) Note g fixes no elements of G, thus $\pi(x)$ is a product of cycles where all the elements are contained. It's easy to see each cycle $\left(\left(x, x g, x^{2} g, \ldots x^{m} g\right)\right.$, where $m=n-1$, as $\left.x^{n} x=1 \cdot x=x\right)$ is a corresponding to a coset of $\langle x\rangle$, thus is with size n. And $G=\sqcup\langle x\rangle g$, where each $\langle x\rangle g$ represents a distinct coset of $\langle x\rangle$, which also can be identified as an n-cycle in the product of $\pi(x)$. Since all the cosets are non-overlapped and with size n, also the G is the disjoint union of these cosets, we get $\pi(x)$ consists of $\frac{|G|}{|x|}=m n$-cycles with each n-cycle is corresponding to a coset of $\langle x\rangle$.
(2) Since $\pi(x)$ is a product of $m n$-cycles and the sgn of an n-cycle is $(-1)^{n-1}, \operatorname{sgn}\left(\pi_{x}\right)=$ $\left[(-1)^{n-1}\right]^{m}$. Thus $\operatorname{sgn}\left(\pi_{x}\right)=\left[(-1)^{n-1}\right]^{m}=-1$ if and only if n is even, m is odd, in other words, $\pi(x)$ is an odd permutation if and only if $|x|$ is even and $\frac{|G|}{|x|}$ is odd.

4.3 Problem 27

By class equation, $|G|=\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|$. By assumption $g_{i} g_{j}=g_{j} g_{i}$, we get $g_{i} \in C_{G}\left(g_{j}\right)$, thus $C_{G}\left(g_{i}\right) \geq r$, thus we have $|G|=\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right| \leq \sum_{i=1}^{r}|G| / r=|G|$, which implies that $\left|G: C_{G}\left(g_{i}\right)\right|=|G| / r$, i.e. $\left|C_{G}\left(g_{i}\right)\right|=r$, i.e. $C_{G}\left(g_{i}\right)=\left\{g_{1}, g_{2}, \ldots g_{r}\right\}$ for each i. Note 1 is among the $g_{1}, g_{2}, \ldots g_{r}$, and $C_{G}(1)=G$, thus $G=C_{G}(1)=\left\{g_{1}, g_{2}, \ldots g_{r}\right\}$, thus G is abelian.

4.4 Problem 18

(a) Assume the representative of K is k, then any $x \in K$, it is in the form of $g k g^{-1}, g \in G$, then to $\sigma \in \operatorname{Aut}(G), \sigma(x)=\sigma(g) \sigma(k) \sigma(g)^{-1}$ is in the conjugacy class of $\sigma(k)$, so $\sigma(K)$ is contained in the conjugacy class of $\sigma(k)$ (say K^{\prime}), similarly, $\sigma^{-1}\left(K^{\prime}\right)$ is contained in K, thus $\sigma(K)$ is a conjugacy class.
(b) The number of conjugates of a cycle is $C_{n}^{2}=\frac{n(n-1)}{2!}=\frac{n(n-1)}{2}$, i.e. $|K|=\frac{n(n-1)}{2}$. Let x be any element of order 2 in S_{n}, that is not a transposition. Assume x to be a product of
k-disjoint 2 -cycles, then by exercise 33 of 4.3 , we get that the conjugacy class K^{\prime} of x is of size

$$
\left|K^{\prime}\right|=\frac{n!}{k!2^{k}}
$$

So if $|K|=\left|K^{\prime}\right|$, then $\frac{n(n-1)}{2}=\frac{n!}{k!2^{k}}$, i.e. $(n-2)!=k!2^{k-1}$, which is true iff $n=6, k=3$. So by the assumption $n \neq 6$, we have $|K| \neq\left|K^{\prime}\right|$.

By (a), any automorphism σ of S_{n} maps the conjugacy class of any transposition x to the conjugacy class of $\sigma(x)$. Since automorphism keeps the order, $\sigma(x)$ is of order 2. Also by (a), these two conjugacy classes have the same order, thus $\sigma(x)$ has to be a transposition.
(c) By (b), each $\sigma \in \operatorname{Aut}\left(S_{n}\right)$ maps a transpositions to transpositions, thus we have $\sigma((1 i))$ is a transposition. To any $(1, j),(1, i)$ with $j \neq i ; i, j / 1$, since σ is an isomorphism, $\sigma((1, i)) \neq \sigma((1, j))$, and $\sigma((1, i)), \sigma((1, j))$ must contain a common number, since otherwise, $\sigma((1, j)) \sigma((1, i))$ is of order 2 , hence $\sigma^{-1}(\sigma((1, j)) \sigma((1, i)))=(1 i)(1 j)=(1 j i)$ is also of order 2 , contradiction. Hence, $\sigma((1, i)), \sigma((1, j))$ must contain a common number say a, i.e. $\sigma((1, i))=\left(a b_{i}\right)$, where the b_{i} s are different by $\sigma((1, i)) \neq \sigma((1, j))$. Also $a \neq b_{i}$ for each i, since $\sigma((1, i))$ is a transposition.
(d) Recall S_{n} is generated by the transpositions, and any transposition $(i j)=(1 i)(1 j)(1 i)$, thus the set of transpositions are generated by $(12),(13), \ldots,(1 n)$, i.e. S_{n} is generated by $(12),(13), \ldots,(1 n)$, hence any automorphism of S_{n} is determined by its action on the elements (12), (13), ..., (1n).

By (c), any $\sigma \in \operatorname{Aut}\left(S_{n}\right), \sigma(i) \neq \sigma(j), i / j$, thus for any $\sigma \in \operatorname{Aut}\left(S_{n}\right)$, the $\sigma(1)$ has n choices, hence $\sigma(2)$ has $n-1$ choices, $\ldots, \sigma(i)$ has $n-i+1$ choices,... So there are n ! possible choices for σ, i.e. S_{n} has at most n ! automorphisms.

By $G / Z(G) \cong \operatorname{Inn}(G)$, we have $n!=\left|S_{n}\right| \leq|\operatorname{Inn}(G)| \leq\left|\operatorname{Aut}\left(S_{n}\right)\right| \leq n!$, thus $|\operatorname{Inn}(G)|=$ $\left|\operatorname{Aut}\left(S_{n}\right)\right|$, thus $\operatorname{Inn}(G)=\operatorname{Aut}\left(S_{n}\right)$.

4.5 Problem 22

If $|G|=132=3 \times 4 \times 11$, then there is a 11 -subgroup, say P. We know $n_{11} \equiv 1 \bmod 11$ and $n_{11} \mid(132 / 11)=12$, if $n_{11} \neq 1$, then $n_{11}=12$. If G is simple, then $n_{11}=12$. And $n_{3} \neq 1$, and $n_{3} \equiv 1 \bmod 3$, and $n_{3} \mid 11 \times 4=44$, thus $n_{3}=4,22$. Similarly, $n_{2} \equiv 1 \bmod 2$ and $n_{2} \mid 11 \times 2=33$, thus $n_{2}=3,11,33$. And 2 -groups, 3 -groups, 11 -groups are all cyclic, thus their intersections can only be $\{1\}$. The number of all non-trivial elements in the 11 -groups and 3 -groups is at least $12 \times(11-1)+4 \times(3-1)=128$, hence there are exactly 4 elements with 3 elements with order not dividing 3,11 , (i.e. dividing 4) thus there is exactly one 4 -group, which is normal, contradiction. Thus G can not be simple.

4.5 Problem 33

Since the intersection of two subgroups is the subgroup of each these two subgroups, thus $H \cap P$ is a subgroup of P, so it's also a p-group. And since P is normal, to any $h \in H$, $p \in P \cap H$, we have $h p h^{-1} \in P, H$, thus $h p h^{-1} \in P \cap H$, i.e. $P \cap H$ is a normal subgroup of H. To any Sylow- p subgroup of H, say K, observe that K is a p-subgroup of G, we get K is contained in a Sylow- p subgroup of G, i.e. P, hence $K=P \cap H$, which proves $P \cap H$ is the Sylow- p subgroup of H, and recall we have proved it is normal, thus the uniqueness follows.

4.6 Problem 2

If N is a proper normal subgroup of $S_{n}, n \geq 5$, then $N \cap A_{n}$ is a normal subgroup of A_{n}. Since A_{n} is simple for $n \geq 5$, we have $N \cap A_{n}=A_{n}$, or $N \cap A_{n}=\{1\}$. If $N \cap A_{n}=A_{n}$, then $A_{n}<N$, by $\left[S_{n}: A_{n}\right]=2$, thus $N=A_{n}$. If $N \cap A_{n}=\{1\}$, consider the projection $f: S_{n} \rightarrow S_{n} / A_{n} \cong \mathbb{Z}_{2}$. If any $x \in N$, s.t. $f(x)=1$, then we have $x \in A_{n}$, then $x=1$, thus the restriction $\left.f\right|_{N}$ is injective, i.e. $N \cong f(N)$ is not trivial, thus $N \cong \mathbb{Z}_{2}$. So N is generated by an odd permutation ($\operatorname{say} x$) with order 2 , which can be expressed as odd transpositions and these transpositions are disjoint since x is with order 2 . Now assume $x=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \ldots\left(a_{n-1} a_{n}\right)$, these a_{i} are distinct since these transpositions are disjoint. Then $\left(a_{2} a_{3}\right) x\left(a_{2} a_{3}\right)=\left(a_{1} a_{3}\right)\left(a_{2} a_{4}\right) \ldots$, which is not x or identity, thus N is not normal, contradiction. Therefore the only proper normal subgroups of $S_{n}(n \geq 5)$, is A_{n}. So when $n \geq 5$, the normal subgroups of S_{n} are $\{1\}, A_{n}, S_{n}$.

5.1 Problem 2

(a) Assume $|I|=m$. Define the map $f: \prod_{i \in I} G_{i} \rightarrow G$ by: any $\left(g_{1}, \ldots g_{m}\right) \in \prod_{i \in I} G_{i} \mapsto$ $g \in G$, where $g_{i} \in G_{i}$, s.t. g is defined that the corresponding tuple of G_{i} in G is g_{i}, and the rest $n-m$ tuples of g are just 1 for each tuple. Then it's easy to see it's an injective homomorphism with image G_{I}, thus by the first isomorphism theorem, $\prod_{i \in I} G_{i} \cong G_{I}$.
(b) By (a), without losing generality, we may assume $G_{I}=G_{1} \times G_{2} \times \ldots \times G_{m} \times\{1\} \times$ $\ldots \times\{1\}$. And to any $\left(g_{1} \times g_{2} \times \ldots \times g_{m} \times 1 \times \ldots \times 1\right) \in G_{I},\left(h_{1}, \ldots h_{n}\right) \in G$, we have $h g h^{-1}=\left(h_{1} g_{1} h_{1}^{-1} \times h_{2} g_{2} h_{2}^{-1} \times \ldots \times h_{m} g_{m} h_{m}^{-1} \times h_{m+1} \cdot 1 \cdot h_{m+1}^{-1} \times \ldots \times h_{n} \cdot 1 \cdot h_{n}^{-1}\right)=$ $\left(h_{1} g_{1} h_{1}^{-1} \times h_{2} g_{2} h_{2}^{-1} \times \ldots \times h_{m} g_{m} h_{m}^{-1} \times 1 \times \ldots \times 1\right)$. Observe $h_{i} g_{i} h_{i}^{-1} \in G_{i}$, thus $h g h^{-1}=$ $\left(h_{1} g_{1} h_{1}^{-1} \times h_{2} g_{2} h_{2}^{-1} \times \ldots \times h_{m} g_{m} h_{m}^{-1} \times 1 \times \ldots \times 1 \in G_{I}\right.$, i.e. G_{I} is normal. It's easy to see that $G / G_{I}=\{1\} \times\{1\} \times \ldots\{1\} \times G_{m+1} \times \ldots \times G_{n}=G_{J}$.
(c) By (a) $G_{I} \cong \prod_{i \in I} G_{i}$, similarly, $G_{J} \cong \prod_{i \in J} G_{i}$, thus $G_{I} \times G_{J} \cong \prod_{i \in I} G_{i} \times \prod_{j \in J} G_{J} \cong G$.

5.1 Problem 11

By p.155, $E_{p^{n}}=\mathbb{Z}_{p} \times \ldots \times \mathbb{Z}_{p}$ (n factors). We may define $\mathbb{Z}_{p} \times \ldots \times \mathbb{Z}_{p}=<a_{1}>\times \ldots \times<a_{n}>$, where each a_{i} is of order p. Also we have $a_{i} a_{j}=a_{j} a_{i}$ and $\operatorname{ord}\left(a_{i}^{m}\right)=p$ if $m \neq p$, thus any non-trivial element $a_{1}^{N_{1}} a_{2}^{N_{2}} \ldots a_{n}^{N_{n}}$ is of order n, since $\left(a_{1}^{N_{1}} a_{2}^{N_{2}} \ldots a_{n}^{N_{n}}\right)^{m}=a_{1}^{m N_{1}} a_{2}^{m N_{2}} \ldots a_{n}^{m N_{n}}$, which equals to 1 iff each $a_{i}^{m N_{i}}=1$, while which equals to 1 iff $m=1$. Observe any sub-
group of order p is generated by an element in $E_{p^{n}}$ and each non-trivial element generates a subgroup with order p. Also $<g>=<g^{j}>$, where $g \in E_{p^{n}}, j \neq p$, thus there are $\frac{p^{n}-1}{p-1}=\sum_{i=0}^{n-1} p^{i}$ subgroups of order p.

5.4 Problem 8

First note $[x, y]=[y, x]^{-1}$, and by $x[x, y]=[x, y] x$, we get $[x, y]^{-1} x[x, y]=x,[x, y]^{-1} x=$ $x[x, y]^{-1}$, i.e. $x[y, x]=[y, x] x$. Similarly, we have $y[y, x]=[y, x] y$.

We can prove the result by induction, when $n=1,(x y)^{n}=x y=x^{n} y^{n}[y, x]^{\frac{n(n-1)}{2}}$, so it's true for $n=1$. Now we assume the equality is true for $n=k-1$, and we consider the case for $n=k$, we know $(x y)^{k}=(x y)^{k-1}(x y)=x^{k-1} y^{k-1}[y, x]^{\frac{(k-1)(k-2)}{2}}(x y)=$ $x^{k-1} y^{k-1}(x y)[y, x] \frac{(k-1)(k-2)}{2}$.

By $y[y, x]=[y, x] y$, we can get $x^{-1} y x=y^{-1} x^{-1} y x y$, thus $y x=x y^{-1} x^{-1} y x y$. So $y^{k-1} x y=$ $y^{k-2}(y x) y=y^{k-2} x y^{-1} x^{-1} y x y y=y^{k-2} x[y, x] y^{2}=y^{k-2} x y^{2}[y, x]$. Similarly, we have $y^{k-1} x y=y^{k-2} x y^{2}[y, x]=y^{k-3} x y^{3}[y, x]^{2}$, keep doing this we can get: $y^{k-1} x y=x y^{k}[y, x]^{k-1}$ So $x^{k-1} y^{k-1}(x y)[y, x]^{\frac{(k-1)(k-2)}{2}}=x^{k-1}\left(x y^{k}[y, x]^{k-1}\right)[y, x]^{\frac{(k-1)(k-2)}{2}}=x^{k} y^{k}[y, x]^{\frac{(k-1) k}{2}}$. So we proved, when $n=k,(x y)^{k}=x^{k} y^{k}[y, x]^{\frac{(k-1) k}{2}}$, i.e. we have finished the induction, which shows we finished the proof.

5.4 Problem 10

By the fundamental theorem of finitely generated abelian group, a finite abelian group is isomorphic to $\mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}} \times \mathbb{Z}_{p_{m} n_{m}}$, where each p_{i} is a distinct prime number. And the subgroup $\{1\} \times \ldots\{1\} \times \mathbb{Z}_{p_{i}} n_{i} \times\{1\} \ldots \times\{1\}$ is a Sylow p_{i} subgroup, by 5.1 Problem 2, we know the whole group is the direct product of all the $\{1\} \times \ldots\{1\} \times \mathbb{Z}_{p_{i}{ }^{n_{i}}} \times\{1\} \ldots \times\{1\}$, i.e. the whole group is the direct product of its Sylow subgroups.

5.4 Problem 16

To any $x=\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right] \in K^{\prime}$, where $a_{i}, b_{i} \in K$, and any $g \in G$,
$g x g^{-1}=g\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right] g^{-1}=\left(g\left[a_{1}, b_{1}\right] g^{-1}\right)\left(g\left[a_{2}, b_{2}\right] g^{-1}\right) \ldots\left(g\left[a_{n-1}, b_{n-1}\right] g^{-1}\right)\left(g\left[a_{n}, b_{n}\right] g^{-1}\right)$, where $g\left[a_{i}, b_{i}\right] g^{-1}=g a_{i}^{-1} g^{-1} g b_{i}^{-1} g^{-1} g a_{i} g^{-1} g b_{i} g^{-1}=\left(g a_{i} g^{-1}\right)^{-1}\left(g b_{i} g^{-1}\right)^{-1} g a_{i} g^{-1} g b_{i} g^{-1}$. Since $a_{i}, b_{i} \in K, K$ is normal, thus $g a_{i} g^{-1}, g b_{i} g^{-1} \in K$, hence we have $g\left[a_{i}, b_{i}\right] g^{-1} \in K^{\prime}$, therefore K^{\prime} is a normal subgroup of G.

5.5 Problem 10

(a) \mathbb{Z}_{147} and $\mathbb{Z}_{21} \times \mathbb{Z}_{7}$ are two abelian groups of order 147. They are not isomorphic because $\operatorname{gcd}(21,7) \neq 1$.
(b) $147=7^{2} \times 3$, By Sylow theorem, $n_{7}=1 \bmod 7$, and $n_{7} \mid 3$, thus n_{7} has to be 1 . Therefore the unique Sylow 7 -subgroup is normal.
(c) Since any group of order 147, has a Sylow 3-subgroup of order 3, i.e. $\cong \mathbb{Z}_{3}$. Note $\left|\mathbb{Z}_{3}\right|\left|\mathbb{Z}_{49}\right|=147$, and \mathbb{Z}_{49} is normal by (b). Thus any subgroup of order 147 with Sylow 7 -subgroup cyclic is just $\mathbb{Z}_{3} \mathbb{Z}_{49}$, moreover it can be represented as $\mathbb{Z}_{49} \rtimes_{\phi} \mathbb{Z}_{3}$, for some homomorphism from \mathbb{Z}_{3} to $\operatorname{Aut}\left(\mathbb{Z}_{49}\right)=\mathbb{Z}_{49}^{*} \cong \mathbb{Z}_{42}$.

Consider $\mathbb{Z}_{49} \rtimes_{\phi} \mathbb{Z}_{3}$, note $\operatorname{Aut}\left(\mathbb{Z}_{49}\right)=\mathbb{Z}_{49}^{*} \cong \mathbb{Z}_{42}$. Observe, $(1,0)(0,1)=(1,1),(0,1)(1,0)=$ $(0+\phi(1) \cdot 1,0+1)=(\phi(1) \cdot 1,1)$, note if ϕ is non-trivial, then $\phi(1) \cdot 1$ is not 1 and relatively prime to 49 , so if $\phi \in \operatorname{Aut}\left(\left(\mathbb{Z}_{49}\right)\right.$ is not trivial, then $(1,0)(0,1) \neq(0,1)(1,0)$. (such a non-trivial homomorphism exists since the homomorphisms from \mathbb{Z}_{3} to \mathbb{Z}_{42} are not always trivial.) Also $\left|\mathbb{Z}_{49} \rtimes_{\phi} \mathbb{Z}_{3}\right|=\left|\mathbb{Z}_{49}\right| \times\left|\mathbb{Z}_{3}\right|=147$. So this is an abelian group of order 147 with Sylow 7 -subgroup cyclic.

First note that if N, H, with $\phi \in H o m(H, \operatorname{Aut}(N)), \beta \in \operatorname{Aut}(H)$, then $N \rtimes_{\phi} H \cong N \rtimes_{\phi \circ \beta} H$ by sending (n, h) to $\left(n, \beta^{-1}(h)\right)$.
Now, in our case, if ϕ is non-trivial, then $\phi(1) \cdot 1=18,30$, since $\phi \in \operatorname{Hom}\left(\mathbb{Z}_{3}, \mathbb{Z}_{49}^{*}\right) \cong \mathbb{Z}_{3}$ and only 18,30 in \mathbb{Z}_{49}^{*} are of order 3 . Define $\phi_{1}(1)=18, \phi_{2}(1)=30$, which implies that $\phi_{1}(2)=30$. Note to the nontrivial $\beta \in \operatorname{Aut}\left(\mathbb{Z}_{3}\right), \phi_{1} \circ \beta(1)=\phi_{1}(2)=30=\phi_{2}(1)$. Thus by above $N \rtimes_{\phi_{1}} H \cong N \rtimes_{\phi_{2}} H$, in other words, these two possible groups are isomorphic, thus there is only one non-abelian group with order 147, whose Sylow 7 -subgroup is cyclic.
(d) $\left|G L_{2}\left(\mathbb{F}_{7}\right)\right|=\left(7^{2}-1\right)\left(7^{2}-7\right)=48 \times 42=3^{2} \times 2^{5} \times 7$. So the Sylow 3-subgroup of $G L_{2}\left(\mathbb{F}_{7}\right)$ is of order 9 . It's easy to see that $t_{1}, t_{2} \in G L_{2}\left(\mathbb{F}_{7}\right)$ thus $<t_{1}, t_{2}>\subset G L_{2}\left(\mathbb{F}_{7}\right)$, and $t_{i}^{2} \neq i d$, but $t_{i}^{3}=i d$, where $i=1,2$. Also $t_{1} t_{2}=2 \cdot i d=t_{2} t_{1}$, thus $\left.\left\langle t_{1}, t_{2}\right\rangle \cong<t_{1}\right\rangle$ $\times<t_{2}>=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

So $<t_{1}, t_{2}>$ is a subgroup of order 9 of $G L_{2}\left(\mathbb{F}_{7}\right)$ so it's a Sylow-3 subgroup of $G L_{2}\left(\mathbb{F}_{7}\right)$ isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Any subgroup of order 3 , say U, of $G L_{2}\left(\mathbb{F}_{7}\right)$, is contained in a Sylow 3 -subgroup of $G L_{2}\left(\mathbb{F}_{7}\right)$, which is conjugate to P, i.e. there exists $g \in G L_{2}\left(\mathbb{F}_{7}\right)$, s.t. $h \subset g P g^{-1}$, hence $g^{-1} h g \subset P$ i.e. U is conjugate to a subgroup of P, i.e. any subgroup of order 3 is conjugate to a subgroup of P.
(e) By the isomorphism of the semi-direct product above, we may assume $\phi_{i}(1)(a, b)=$ $t_{i}(a, b)$, so $\left(\left(a_{1}, b_{1}\right), c_{1}\right) \cdot\left(\left(a_{2}, b_{2}\right), c_{2}\right)=\left(\left(a_{1}, b_{1}\right)+t_{i}\left(c_{1}\right)\left(a_{2}, b_{2}\right), c_{1}+c_{2}\right)$. Define $x:=$ $((1,0), 0), y=((0,1), 0), z((0,0), 1)$. It's easy to see that x, y, z generate G_{i}.

By computation, $x^{2} z=((2,0), 1)=z x, z y=((0,1), 1)=y x$, thus

$$
G_{1}=<x, y, z \mid x^{7}=y^{7}=z^{3}, x y=y x, z y=y z, z x=x^{2} z>.
$$

Similarly,

$$
G_{2}=<x, y, z \mid x^{7}=y^{7}=z^{3}, x y=y x, z y=y z, z x=x^{2} z>.
$$

Thus $G_{1} \cong G_{2}$.
Similarly

$$
G_{3}=<x, y, z \mid x^{7}=y^{7}=z^{3}, x y=y x, z y=y^{2} z, z x=x^{2} z>.
$$

Similarly

$$
G_{4}=<x, y, z \mid x^{7}=y^{7}=z^{3}, x y=y x, z y=y^{4} z, z x=x^{2} z>.
$$

(f) By the presentation of G_{1}, we know $y x=x y, y z=z y$, thus $\left\langle y>\subset Z\left(G_{1}\right)\right.$, thus $Z\left(G_{1}\right)$ is non-trivial, while by the presentations of G_{3}, G_{4}, we can see the centres are trivial. Thus G_{1} is not isomorphic to G_{3} or G_{4}.
(g) By Sylow theorem, any 7 -subgroup is contained in a Sylow 7 -subgroup, so any 7 subgroup is contained in $\mathbb{Z}_{7} \times \mathbb{Z}_{7}$, which is $\langle x\rangle \times\langle y\rangle$, thus the subgroups of order 7 are $\langle x\rangle,\langle y\rangle,\left\langle x y^{i}\right\rangle, i=1, \ldots, 6$.

By the presentation of $G_{3}, y x y^{-1}=x, z x z^{-1}=x^{2}$, thus $\langle x\rangle$ is normal. And $y\left(x y^{i}\right) y^{-1}=$ $\left(y x y^{-1} y^{i}=x y^{i}\right.$. And by $z y=y^{2} z$, we have that $y z^{-1}=z^{-1} y^{2}, z\left(x y^{i}\right) z^{-1}=z x z^{-1} y^{2 i}=$ $x^{2} y^{2 i}=\left(x y^{i}\right)^{2} \in\left\langle x y^{i}\right\rangle$, thus each $\left\langle x y^{i}\right\rangle$ is normal, i.e. each subgroup of order 7 in G_{3} is normal.

Similarly to the case of G_{3}, we can get in $G_{4}: z\left(x y^{i}\right) z^{-1}=x^{2} y^{4 i}$ which is not always in $\left\langle x y^{i}\right\rangle$, for example, when $i=1, z x y z^{-1}=x^{2} y^{4} \in<x y^{2}>$, but $\left.<x y>\cap<x y^{2}\right\rangle=\{1\}$, thus $<x y>$ is not normal. In other words, there is a subgroup of order 7 in G_{4} not normal, thus $G_{3} \not \neq G_{4}$.
(h) If the group, say G, is abelian, then the only two choices are \mathbb{Z}_{147} and $\mathbb{Z}_{21} \times \mathbb{Z}_{7}$ since $147=7^{2} \times 3$ and by the fundamental theorem of finitely generated group. If the group, say G, is not abelian, then by and (b), (c), its Sylow 7 -subgroup is normal and cyclic, thus $G=\mathbb{Z}_{49} \rtimes \mathbb{Z}_{3}$. And (d),(e),(f),(g) determine the four possible cases up to isomorphisms, thus there are only 6 cases for the group G of order 147.

5.5 Problem 16

Note $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8}^{*}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, i.e. there are 3 elements with order 2, say a, b, c, and there are 4 choices of mapping the generator of \mathbb{Z}_{2} to $A u t\left(\mathbb{Z}_{8}\right)$. And if mapping the generator of \mathbb{Z}_{2} to a, b, c respectively, we get 3 injective homomorphisms and if mapping the generator of \mathbb{Z}_{2} to the identity of $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$, we get a trivial homomorphism. So, we can
conclude that there are 4 homomorphisms in total.
Now we consider the four $\mathbb{Z}_{8} \rtimes_{\phi_{i}} \mathbb{Z}_{2}$, where each ϕ_{i} is among the 4 homomorphisms described above.
First, note, for any $i,(1,0) \in \mathbb{Z}_{8} \rtimes_{\phi_{i}} \mathbb{Z}_{2}$, we have $(j, 0)(1,0)=\left(j+\phi_{i}(0) \cdot 1,0+0\right)=(j+1,0)$, i.e. $(1,0)^{8}=i d$. And $(0, i)(0, j)=\left(0+\phi_{i}(0) \cdot 0, i+j\right)=(0, i+j)$, thus $(0,1)^{2}=(0,0)=i d$. Second by $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8}{ }^{*}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$, we can get each $\phi_{i}(1)=1,3,5,7 \in \mathbb{Z}_{8}$.

Assume ϕ_{1} is the trivial homomorphism, then $\mathbb{Z}_{8} \rtimes_{\phi_{1}} \mathbb{Z}_{2}=\mathbb{Z}_{8} \times \mathbb{Z}_{2}$.
Assume ϕ_{2} is the homomorphism mapping $1 \in \mathbb{Z}_{8} \mapsto 3 \in \mathbb{Z}_{8}$, then to $(1,0),(0,1) \in \mathbb{Z}_{8} \rtimes_{\phi_{2}}$ \mathbb{Z}_{2}, we have $(1,0)(0,1)=\left(1+\phi_{2}(0) \cdot 1,0+1\right)=(1,1)$ and $(0,1)(1,0)=\left(0+\phi_{2}(1) \cdot(1), 1+0\right)=$ $(3,1),(3,1)(1,0)=\left(3+\phi_{2}(1) \cdot(1), 1+0\right)=(6,1),(6,1)(1,0)=\left(6+\phi_{2}(1) \cdot(1), 1+0\right)=$ $(9,1)=(1,1)=(1,0)(0,1)$. Similarly, we have $(0,1)(1,0)^{n}=\left(0+n \phi_{2}(1) \cdot(1), 1+0\right)=$ $(3 n, 1)$ and $\left.(0,1)(1,1)^{n}=\left(0+n \phi_{2}^{(} 1\right) \cdot(1), 1+1\right)=(3 n, 2)=(3 n, 0)$, and as n changes, $3 n$ can be any element in \mathbb{Z}_{8} so $(0,1),(1,0)$ generate $\mathbb{Z}_{8} \rtimes_{\phi_{2}} \mathbb{Z}_{2}$.
So we can conclude that $\mathbb{Z}_{8} \rtimes_{\phi_{2}} \mathbb{Z}_{2}=<(1,0),(0,1) \mid(1,0)^{8}=(0,1)^{2}=i d,(0,1)(1,0)^{3}=$ $(1,0)(0,1)>=Q D_{16}$.

Assume ϕ_{3} is the homomorphism mapping $1 \in \mathbb{Z}_{8} \mapsto 5 \in \mathbb{Z}_{8}$, similarly, we can get $(1,0)(0,1)=\left(1+\phi_{3}(0) \cdot 1,0+1\right)=(1,1)$ and $(0,1)(1,0)^{n}=\left(0+n \phi_{3}(1) \cdot(1), 1+0\right)=(5 n, 1)$, $(0,1)(1,1)^{n}=\left(0+n \phi_{3}(1) \cdot(1), 1+1\right)=(5 n, 0)$, and as n changes, $5 n$ can be any element in \mathbb{Z}_{8}, so $(0,1),(1,0)$ generate $\mathbb{Z}_{8} \rtimes_{\phi_{3}} \mathbb{Z}_{2}$. Moreover, $(1,0)(0,1)=(1,1)=(25,1)=$ $(0,1)(1,0)^{5}$. So we can conclude that $\mathbb{Z}_{8} \rtimes_{\phi_{3}} \mathbb{Z}_{2}=<(1,0),(0,1) \mid(1,0)^{8}=(0,1)^{2}=$ $i d,(0,1)(1,0)^{5}=(1,0)(0,1)>=M$.

Assume ϕ_{4} is the homomorphism mapping $1 \in \mathbb{Z}_{8} \mapsto 7 \in \mathbb{Z}_{8}$, similarly, we can get $(1,0)(0,1)=\left(1+\phi_{3}(0) \cdot 1,0+1\right)=(1,1)$ and $(0,1)(1,0)^{n}=\left(0+n \phi_{4}(1) \cdot(1), 1+0\right)=(7 n, 1)$, $(0,1)(1,1)^{n}=\left(0+n \phi_{4}(1) \cdot(1), 1+1\right)=(7 n, 0)$, and as n changes, $7 n$ can be any element in \mathbb{Z}_{8}, so $(0,1),(1,0)$ generate $\mathbb{Z}_{8} \rtimes_{\phi_{4}} \mathbb{Z}_{2}$. Moverover, $(1,0)(0,1)=(1,1)=$ $(49,1)=(0,1)(1,0)^{7}=(1,1)$, in other words, $(1,0)(0,1)=(1,1)=(0,1)(1,0)^{-1}$ (observe $\left.(1,0)^{-1}=(1,0)^{7}\right)$. So we can conclude that $\mathbb{Z}_{8} \rtimes_{\phi_{4}} \mathbb{Z}_{2}=<(1,0),(0,1) \mid(1,0)^{8}=$ $(0,1)^{2}=i d,(0,1)(1,0)^{-1}=(1,0)(0,1)>=D_{16}$.

7.1 Problem 23

(a) First, $1=1+0 f \omega \in O_{f}$. Also, for $z_{1}=a_{1}+b_{1} f \omega$ and $z_{2}=a_{2}+b_{2} f \omega$, we have that $z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+f \omega\left(b_{1}+b_{2}\right) \in O_{f} . z_{1} z_{2}=a_{1} b_{1}+b_{1} b_{2} f_{2} \omega^{2}+f \omega\left(b_{1} a_{2}+a_{1} b_{2}\right)$. And if $D \not \equiv 1 \bmod 4, z_{1} z_{2}=a_{1} b_{1}+D b_{1} b_{2} f^{2}+f \sqrt{D}\left(b_{1} a_{2}+a_{1} b_{2}\right) \in O_{f}$; if $D \equiv 1 \bmod 4$, $z_{1} z_{2}=a_{1} b_{1}+\frac{D-1}{4} b_{1} b_{2} f^{2}+f \omega\left(b_{1} a_{2}+a_{2} b_{1}+f b_{1} b_{2}\right) \in O_{f}$. So we get O_{f} is a subring of O.
(b) Let $z=a+b \omega \in O$, and write $b=f q+r$, with $0 \leq r \leq f$. Then $z=a+b \omega=a+(f q+$ $r) \omega=r \omega+(a+f q \omega)=r \omega O_{f}$, thus the representatives of O / O_{f} are $\{0, \omega, 2 \omega, \ldots,(f-1) \omega\}$. Thus $\left[O: O_{f}\right]=f$.
(c) Let R be a subring of O containing 1 such that the quotient group O / R has index f. Since $1 \in R, \mathbb{Z} \in R$. To any $a+b \omega \in O$, we have $f a+f b \omega \in R$, hence $f b \omega \in R$, thus $O_{f} \in R$. Since both quotients have index f, this implies $R=O_{f}$.

7.1 Problem 25

(a) $\alpha \bar{\alpha}=(a+b i+c j+d k)(a-b i-c j-d k)=a^{2}+b^{2}+c^{2}+d^{2}-b c i j+b d k i+c b i j-$ $c d j k-d b k i+c d j k=a^{2}+b^{2}+c^{2}+d^{2}$. Thus $N(\alpha)=\alpha \bar{\alpha}$.
(b) $N(\alpha \beta)=N((a+b i+c j+d k)(x+y i+z j+w k))=N((a x-b y-c z-d w)+(a y+b x+$ $c w-d z) i+(a z-b w+c w+d y) j+(a w+b z-c y+d x) k))=(a x-b y-c z-d w)^{2}+(a y+b x+$ $c w-d z)^{2}+(a z-b w+c w+d y)^{2}+(a w+b z-c y+d x)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(x^{2}+y^{2}+z^{2}+w^{2}\right)$. $N(\alpha \beta)=N(\alpha) N(\beta)$.
(c) If α is a unit with inverse β, by $1=N(1)=N(\alpha \beta)=N(\alpha) N(\beta)$ and $N(\alpha), N(\beta) \in \mathbb{Z}$, we get $N(\alpha)=N(\beta)=1$. Conversely, if $N(\alpha)=1$, then $1=N(\alpha)=\alpha \bar{\alpha}$, by definition, $\bar{\alpha} \in I$, thus α is a unit.
To any $\alpha=a+b i+c j+d k=\in I^{\times}$, thus $N(a+b i+c j+d k)=a^{2}+b^{2}+c^{2}+d^{2}=1$, hence $a, b, c, d=0, \pm 1$ and 3 of them must be 0 . Thus $\left|I^{\times}\right|=8$. Since I^{\times}is not abelian with 4 elements of order 2 , we have $I^{\times} \cong Q_{8}$.

7.1 Problem 26

(a) By $V(1)=V(1 \cdot 1)=V(1)+V(1)$, we have $V(1)=0$, thus $1 \in R$. It remains to show that R is closed under subtraction and multiplication. Note $0=v(1)=v(-1) V(-1)=2 V(-1)$, thus $-1 \in R$, thus if $a \in R$, then so is $-a$.
If $a, b \in R$, then $V(a-b) \geq \min \{V(a), V(-b)\} \geq 0$, hence R is closed under subtraction. By V is a homomorphism we can conclude that R is closed under multiplication. Thus R is a subring.
(b) We have $0=v(1)=v\left(x x^{-1}\right)=v(x)+v\left(x^{-1}\right)$, so either $v(x) \geq 0$ or $v\left(x^{-1}\right) \geq 0$, and the result follows.
(c) Suppose that $x \in R$ is a unit. Then $x^{-1} \in R$, hence $V(x), V\left(x^{-1}\right) \geq 0$. By $0=v\left(x x^{-1}\right)=v(x)+v\left(x^{-1}\right)$, we have $V(x)=0$. Now suppose that $V(x)=0$. Then $0=v(x)+v\left(x^{-1}\right), v\left(x^{-1}\right)=0$ thus $x^{-1} \in R$, which implies that x is a unit.

7.2 Problem 3

(a) Obviously, $1=1+\sum_{n=1}^{\infty} 0 \cdot x^{n} \in R[[x]]$. Let $\alpha=\sum_{n=0}^{\infty} a_{n} x^{n}, \beta=\sum_{n=0}^{\infty} b_{n} x^{n}$,
then $\alpha \beta=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{j+i=n}^{\infty} b_{j} a_{i}\right) x^{n}=\sum_{n=0}^{\infty}\left(\sum_{i+j=n}^{\infty} a_{i} b_{j}\right) x^{n}=$ $\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\beta \alpha$. So $R[[x]]$ is a oommutative ring with 1 .
(b) We define $a_{0}=1, a_{1}=-1, a_{i}=0, i \geq 2$, and $b_{i}=1$, any i, thus $(1-x)\left(1+x+x^{2}+\ldots\right)=$ $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}=a_{0}\left(b_{0} x^{0}+b_{1} x+b_{2} x^{2}+\ldots\right)+a_{1}\left(b_{0} x^{1}+\right.$ $\left.b_{1} x^{2}+\ldots\right)=\left(1+x+x^{2}+\ldots\right)-\left(x+x^{2}+x^{3}+\ldots\right)=1$, thus $1-x$ is a unit.
(c) Assume $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)$ is a unit, then there exists $\sum_{n=0}^{\infty} b_{n} x^{n}$, s.t. $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=$ $\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}=1$. So $a_{0} b_{0}=1$, i.e. a_{0} is a unit in R.
Conversely, if a_{0} is a unit in R, Define $b_{0}=a_{0}^{-1}, b_{n+1}=-a_{0}^{-1} \sum_{j=1}^{n+1} a_{j} b_{n+1-j}$, It is easy to see that for $n \geq 1, \sum_{j=0}^{n} a_{j} b_{n-j}=0$, Now let $g=\sum_{i=0}^{\infty} b_{i} x^{i}$, we get $\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)(g)=1$.

7.2 Problem 6

(a) Define $E_{i j} A=\left(r_{p q}\right)$, note $r_{p q}=\sum_{k=1}^{n} e_{p k} a_{k q}$, and if $p \neq i$, then $e_{p k}=0$, hence $r_{p q}=0$. And if $p=i$, then $r_{p q}=a_{j q}$, that finishes the proof.
(b) Define $A E_{i j}=\left(r_{p q}\right)$, note $r_{p q}=\sum_{k=1}^{n} a_{p k} e_{k q}$, and if $q \neq j$, then $e_{k q}=0$, hence $r_{p q}=0$. And if $q=j$, then $r_{p q}=a_{p i}$, that finishes the proof.
(c) $E_{p q} A E_{r s}$, by (a) $E_{p q} A$ whose p th row equals the q th row of A and all other rows are zero; by (b) $E_{p q} A E_{r s}$ whose sth column equals the r th column of $A E_{i j}$ and all other columns are zero, thus whose p, s entry is $a_{q r}$ and all other entries are zero.

7.2 Problem 7

To any $r \in \mathbb{R}$, define $r I$ to be the diagonal matrix with d along the diagonal. To any $A=\left(a_{i j}\right) \in M_{n}(\mathbb{R})$, then we can get $r I \cdot A=A \cdot r I=\left(r a_{i j}\right)$, thus $r I \in$ the centre.
And to any $A=\left(a_{i j}\right) \in$ the centre, consider $H=\sum_{i=1}^{n} E_{i 1} A E_{1 i}$. By last one, H is a diagonal matrix all of whose diagonal entries equal a_{11}. By A is from the center, $H=\sum_{i=1}^{n} A E_{i 1} E_{1 i}=A \sum_{i=1}^{n} E_{i 1} E_{1 i}=A$, thus A is a diagonal matrix all of whose diagonal entries equal a_{11}, that finishes the proof.

7.2 Problem 13

(a) Note the conjugating by g permutes the elements of \mathcal{K}, thus $g K^{-1}=K$, thusgK $=$ $K g$. So, to any $\sum_{i=1}^{n} r_{i} g_{i},\left(\sum_{i=1}^{n} r_{i} g_{i}\right) K=\sum_{i=1}^{n} r_{i} g_{i} K=\sum_{i=1}^{n} r_{i} K g_{i}=\sum_{i=1}^{n} K r_{i} g_{i}=$ $K\left(\sum_{i=1}^{n} r_{i} g_{i}\right)$, thus K is in the centre.
(b) To any $\sum_{i=1}^{n} r_{i} g_{i} \in R G$ and $\alpha, \sum_{i=1}^{n} r_{i} g_{i} \alpha=\sum_{j=1}^{r}\left(\sum_{i=1}^{n} r_{i} g_{i}\right)\left(a_{j} K_{j}\right)$ by (a), $=\sum_{j=1}^{r}\left(a_{j} K_{j}\right)\left(\sum_{i=1}^{n} r_{i} g_{i}\right)=\left(\sum_{j=1}^{r} a_{j} K_{j}\right)\left(\sum_{i=1}^{n} r_{i} g_{i}\right)=\alpha\left(\sum_{i=1}^{n} r_{i} g_{i}\right)$. Thus α is in the center.

Conversely, assume α is in the centre. Since $G=\cup \mathcal{K}_{i}, \alpha$ is in the form of $\sum a k$, where
$k \in \mathcal{K}_{i}$ for some i and $a \in R$. If $a_{i} k$ is a sum element of α, where $k \in \mathcal{K}_{i}, a_{i} \in R$, then since the conjugation permutes the elements of \mathcal{K}_{i}, all the other elements of \mathcal{K}_{i} times a should also be a sum element since α is fixed under conjugation, thus α is in the form of $\sum_{i=1}^{n} a_{i} K_{i}$.

7.3 Problem 10

(a) Yes (b) No (c) Yes (d) No (e) Yes (f) No.

7.3 Problem 29

To any $x, y \in$ that set and $z \in R$, assume $x^{n}=1=y^{m}$. Since R is commutative, thus $(x z)^{n}=x^{n} z^{n}=0 z^{n}=0$. And $(x-y)^{n+m}=\sum C_{n+m}^{i} x^{i}(-y)^{n+m-i}$ Since $i+(n+m-i)=$ $n+m$, either $i \geq n$ or $n+m-i \geq m$, in either case we get $x^{i} y^{n+m-i}=0$, thus $(x+y)^{n+m}=0$. So we get the set is an ideal.

7.3 Problem 33

(a) If $a_{1}, \ldots a_{n}$ are nilpotent and a_{0} is a unit, then by 7.1 problem 14 and the sum nilpotent elements is nilpotent, we get it's a unit, since the polynomial is a sum of a nilpotent element and a unit.
Conversely, if the poly is a unit, assume $q(x)=b_{m} x^{m}+\ldots b_{0}$ and $p(x) q(x)=1$, then $b_{0} a_{0}=1$ thus a_{0} is a unit. Now we have $a_{n} b_{m}=0, a_{n-1} b_{m}+a_{n} b_{m-1}=0, \ldots, a_{n} b_{0}+a_{n-1} b_{1}+\ldots a_{0} b_{n}=$ 0 . By multiplying proper ${a_{n}}^{k}$ to each equation, we may conclude that ${a_{n}}^{m+1-j} b_{j}=0$.Thus $\left(a^{n}\right)^{m+1} q(x)=0$. However $q(x)$ is a unit, which can not be a zero-divisor, thus $\left(a^{n}\right)^{m+1}=0$, i.e. a_{n} is a nilpotent, thus $p(x)-a_{n} x^{n}$ is a unit, therefore by repeating the last procedure we get a_{n-1} is nilpotent. Keep this procedure, we can conclude all the $a_{i}, i \neq 0$ are nilpotent.
(b) If each a_{i} is nilpotent, then each $a_{i} x^{i}$ is also a nilpotent element of $R[x]$, then $p(x)$ is a sum of nilpotent elements, thus it's nilpotent by last problem. If $p(x)$ is nilpotent.
Conversely, we can prove by induction. To degree 0 , then a_{0} is nilpotent by definition. Now we assume to any polynomial with degree $n-1$, if the polynomial is nilpotent then its coefficients are nilpotent. Now to any nilpotent poly with degree n, say $a_{n} x^{n}+\ldots a_{1} x+a_{0}$, and assume $\left(a_{n} x^{n}+\ldots a_{1} x+a_{0}\right)^{m}=0$, s.t. $a_{n}^{m} x^{n m}=0$, hence $a_{n}^{m}=0$, i.e. a_{n} is nilpotent, and $a_{n} x^{n}$ is nilpotent. By last problem, $a_{n} x^{n}+\ldots a_{1} x+a_{0}-a_{n} x^{n}$ is nilpotent, which is a nilpotent poly with degree $n-1$ thus all its coefficients are nilpotent. Thus any n-degree nilpotent poly's coefficients are nilpotent. That finishes the proof.

7.4 Problem 11

If both I, J are not contained in P, then there exits $i \in I, j \in J$, s.t. $i, j \notin P$, but $i j \in I J \subset P$, thus either i or j is contained in P, contradiction. Thus either I or J is contained in P.

7.4 Problem 19

To any prime ideal P of $R, R / P$ is a finite integral domain which is a field, thus P is
maximal.

7.4 Problem 30

To any $x, y \in$ that $\operatorname{rad} I$ and $z \in R$, assume $x^{n}, y^{m} \in I$. Since R is commutative, thus $(x z)^{n}=x^{n} z^{n} \in I$, since $x^{n} \in I$. And $(x-y)^{n+m}=\sum C_{n+m}^{i} x^{i}(-y)^{n+m-i}$ Since $i+(n+m-i)=n+m$, either $i \geq n$ or $n+m-i \geq m$, in either case we get $x^{i} y^{n+m-i} \in I$, thus $(x+y)^{n+m} \in I$. So we get the $\operatorname{rad} I$ is an ideal.
To any $a \cdot I \in(\operatorname{rad} I) / I$, there exits $n \in \mathbb{Z}^{*}$, s.t. $(a \cdot I)^{n}=0$. And any $a \cdot I \in R / I$, s.t. $(a \cdot I)^{n}=0$, then $a^{n} \in I$, so $a \cdot I \in(\operatorname{rad} I) / I$. So by 7.3 exercise $29,(\operatorname{rad} I) / I=\mathcal{R}(R / I)$.

7.4 Problem 32

(a) Intersections of ideals are ideals so Jac I is an ideal. Since it is the intersection of ideals all of which contain I, then it contains I.
(b) To any maximal ideal M containing $I, R / M$ is a field. If $r \in R, r^{n} \in I$, then $(r \cdot M)^{n} \in I \cdot M=M$, so $r^{n} \in M$, since M is prime, we get $r \in M$. So $\operatorname{rad} I \subset$ $\mathrm{Jac} I$.
(c) Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, where $p_{i} \mathrm{~S}$ are distinct prime numbers. Then Jac $n \mathbb{Z}=\left(p_{1}\right) \cap\left(p_{2}\right) \cap$ $\ldots \cap\left(p_{k}\right)=\left(p_{1} p_{2} \ldots p_{k}\right)$.

7.4 Problem 37

To any $r \in R-M$, consider the ideal $\langle r\rangle$, which is contained in a maximal ideal if $<r\rangle \neq R$. Since R is local, if $\langle r\rangle \neq R, r \in<r>\subset M$, which is a contradiction. Thus $<r>=R$, hence $1 \in<r>$, thus r is a unit.

Conversely, any maximal ideal doesn't contain any units, otherwise it contains 1 , which is a contradiction. Thus any maximal ideal is contained in M, hence it equals to M by maximality. Thus there is only one maximal ideal.

7.4 Problem 41

(a) Note \mathbb{Z} is a PID, thus the ideals are in the form of $\langle x\rangle$, where $x \in \mathbb{Z}$. If $x=p_{1}^{n_{1}} \ldots p_{m}^{n_{m}}$, where p_{i} s are distinct prime numbers. Then $p_{1} \cdot\left(p_{1}^{n_{1}-1} \ldots p_{m}^{n_{m}}\right) \in\langle x\rangle$. Obviously, if $m \neq 1$, then to any $n,\left(p_{1}^{n_{1}-1} \ldots p_{m}^{n_{m}}\right)^{n}, p_{1}^{n} \notin\langle x\rangle$. Thus primary ideals are in the form of $\left\langle p^{n}\right\rangle$, where p is prime. And obviously, $\left\langle p^{n}\right\rangle$ and 0 are primary. That finishes the proof.
(b) To a prime ideal P, if $a b \in P$, then either a or b is contained in P, thus every prime ideal is primary.
(c) To any zero divisor of R / Q, say $r+Q$, there exits $s \in R, \notin Q$ s.t. $r s \in Q$, so by the explanation in the question, a positive power of r and a positive power of s both lie in Q,
which means there exists $n \in \mathbb{Z}^{*}$, s.t. $r^{n} \in Q$, thus $(r+Q)^{n}=r^{n}+Q=Q$, i.e. $r+Q$ is a nilpotent element.
(d) To any $a b \in \operatorname{rad}(Q)$, then there exists $n \in \mathbb{Z}^{*}$, s.t. $(a b)^{n}=a^{n} b^{n} \in Q$ if either a^{n} or b^{n} is contained in Q, then we are done, otherwise we have neither a^{n} nor b^{n} is in Q, we have a positive power of a^{n} and a positive power of b^{n} both lie in Q, thus either a or b is on $\operatorname{rad}(Q)$, which finishes the proof.

7.6 Problem 5

(a) It suffices to show that if $(m, n)=1$ then the ideals (m) and (n) are comaximal. Because, if we knew that this is the case then we know that $\left(n_{i}\right)$ and $\left(n_{j}\right)$ were comaximal, and thus that the Chinese Remainder Theorem applies to the ideals $\left(n_{1}\right), \ldots,\left(n_{k}\right)$. The intersection of these ideals is exactly $\left(n_{1} \ldots n_{k}\right)$. The equivalences specify an element in $Z / n_{1} \times \ldots Z / n_{k}$; the fact that there is a unique solutions follows from the fact that this is isomorphic to $Z / n_{1} \ldots n_{k}$.
If $(m, n)=1$ then there exist integers a, b such that $a m+b n=1$; thus the ideal $(m, n)=\mathbb{Z}$, and (m) and (n) are comaximal, as desired.
(b) Since x is unique it suffices to show that this x satisfies the above equivalences. For any $i, n_{i} \mid n_{j}^{\prime}$ for $j \neq i$, so

$$
x \equiv a_{i} t_{i} n_{i}^{\prime} \equiv a_{i} \quad \bmod n_{i},
$$

that finishes the proof.
(c) We have $n_{1}^{\prime}=2025 \equiv 1 \bmod 8, n_{2}^{\prime}=648 \equiv-2 \bmod 25, n_{3}^{\prime}=200 \equiv 81 \bmod 38$ and $t_{1}=1, t_{2}=12, t_{3}=32$. Thus $x \equiv 1 \cdot 1 \cdot 1+2 \cdot 12 \cdot(-2)+3 \cdot 32 \cdot 38 \equiv 3601 \bmod 16200$, and $y \equiv 5 \cdot 1 \cdot 1+12 \cdot 12 \cdot(-2)+47 \cdot 32 \cdot 38 \equiv 8269 \bmod 16200$.

7.6 Problem 8

(a) $a \sim a$ since $\rho_{11}(a)=\rho_{11}(a)$. If $a \sim b$, then $\rho_{i k}(a)=\rho_{j k}(b)$, thus $\rho_{j k}(b)=\rho_{i k}(a)$, hence $b \sim a$. If $a \sim b, b \sim c$, then $\rho_{i k}(a)=\rho_{j k}(b), \rho_{k p}(b)=\rho_{t p}(c)$, thus $\rho_{k p} \circ \rho_{i k}(a)=\rho_{t p}(c)$. Thus $a \sim c$. That finishes the proof.
(b) If $\rho_{i}(a)=\rho_{i}(b)=\bar{a}$, which implies $\rho_{i j}(a)=d=\rho_{i j}(a)$ for some $d \in A_{j}$ and some j, which is impossible since $\rho_{i j}$ is injective.
(c) Suppose that $c \in A_{q}, d \in A_{w}$, with $\rho_{q t}(c)=\rho_{i t}\left(\underline{a)}, \rho_{w s}(d)=\rho_{j s}(b)\right.$. Then $\bar{c}+\bar{d}=$ $\overline{\rho_{t k} \circ \rho_{q t}(c)+\rho_{s k} \circ \rho_{w s}(d)}=\overline{\rho_{q t}(c)}+\overline{\rho_{w s}(d)}=\overline{\rho_{i t}(a)}+\overline{\rho_{j s}(b)}=\bar{a}+\bar{b}$. Thus it's well-defined. Note to $a \in A_{i}, \bar{a}+\overline{-a}=\overline{\rho_{i i}(a)+\rho_{i i}(-a)}=\overline{a-a}=\overline{0}$. Thus it has inverse. It's easy to see the associativity, thus it's a group, and ρ_{i} is a group homomorphism since $\rho_{i}(a+b)=\overline{a+b}=\overline{\rho_{i i}(a)+\rho_{i i}(b)}=\bar{a}+\bar{b}=\rho_{i}(a)+\rho_{i}(b)$.
(d) Define the multiplicity by $\bar{a} \cdot \bar{b}=\overline{\rho_{i k}(a) \cdot \rho_{j k}(b)}$, where $a \in A_{i}, b \in A_{j}$. Similarly to (b), it's well-defined. Since each A_{k} is a commutative ring, it's immediate that $\bar{a} \cdot \bar{b}=$ $\rho_{i k}(a) \cdot \rho_{j k}(b)=\rho_{j k}(b) \cdot \overline{\rho_{i k}(a)}=\bar{b} \cdot \bar{a}$. Thus A is a commutative ring, and the 1 is defined as $\overline{1}\left(\right.$ note $\left.\rho_{i k}(1)=\rho_{j k}(1)\right)$.
(e) Define $\phi(\bar{a})=\phi_{i}(a)$, where $a \in A_{i}$. It's easy to see it's well-defined. If there is an alternative homomorphism $\psi: A \rightarrow C$, then to any $a \in A_{i}, \psi(\bar{a})=\psi \circ \rho_{i}(a)=\phi_{i}(a)=$ $\phi \circ \rho_{i}(a)=\phi(\bar{a})$, thus $\psi=\phi$.

7.6 Problem 11

(a) We can identify $\left(a_{1}, a_{2}, \ldots a_{n}\right) \in \varliminf_{亡} Z / p^{i} Z$ as $b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}$, where $b_{i-1}=$ $\left(a_{i} \bmod p^{i-2}\right) / p^{i-1}$. It's easy to see this satisfies the $\mu_{i j}$. If $\left(a_{1}, a_{2}, \ldots a_{n}\right) \in \lim _{\leftrightarrows} Z / p^{i} Z$, $=c_{0}+c_{1} p+\ldots c_{m-1} p^{m-1}$. By $\mu_{i j}, b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}=c_{0}+c_{1} p+\ldots c_{m-1} p^{m-1}$, which shows the uniqueness. We can use the pullback of the addition and multiplication in $\left\{b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}\right\}$ to define the addition and multiplication in Z_{p}.
(b) Let's prove by induction, first note $0=0$, we assume $n \in Z,=b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}$, then $n+1$, if $b_{0}<p-1$, then $n+1=\left(b_{0}+1\right)+b_{1} p+\ldots b_{n-1} p^{n-1}$, otherwise, $n+1=$ $0+\left(b_{1}+1\right) p+\ldots b_{n-1} p^{n-1}=\left(b_{1}+1\right) p+\ldots b_{n-1} p^{n-1}$, and we can repeat what we just did to $b_{1}, \ldots b_{n-1}$, in particular, if $n+1=\left(b_{n-1}+1\right) p^{n-1}$ and $b_{n-1}+1=p$, then $n+1=p^{n}$. Thus we have any $n \in Z$ is contained in Z_{p}.
(c) If $\left(b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}\right) \cdot c_{0}+c_{1} p+\ldots c_{m-1} p^{m-1}=1$, thus $\left(b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}\right) \cdot$ $\left(c_{0}+c_{1} p+\ldots c_{m-1} p^{m-1}\right) \bmod p=1$, thus $b_{0} \cdot c_{0} \bmod p=1$, thus $b_{0} \neq 0$.
If $\left.b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}\right)$ is with $b_{0} \neq 0$, then by 7.2 problem $3-(c)$, it is a unit.
(d) By problem (a), we identify each $\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right) \in Z_{p}$ as $b_{0}+b_{1} p+\ldots b_{n-1} p^{n-1}+\ldots$, then $p\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right)=b_{0} p+b_{1} p^{2}+\ldots b_{n-1} p^{n}+\ldots$, thus $Z_{p} / p Z_{p}=\{0,1, \ldots p\}=Z / p Z$.
To any non-zero ideal I, let p^{k} is the largest p^{i} dividing all the elements in I. Thus $I \subset\left(p^{k}\right)$ Assume $a \in I$, s.t. $a=b p^{k}$, where $p \nmid b$, then by (c), b is a unit. Thus $p^{k}=b^{-1} a \in I$, thus $I=\left(p^{k}\right)$.
Since $Z_{p} /\left(p^{k} Z_{p}\right)=Z / p^{k} Z$ is a field iff $k=1$, thus $p Z_{p}$ is the unique maximal ideal.
(e) Define $a=\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right)$. Obviously, a_{i} satisfies the requirement by Fermat's little theorem. Assume $a_{i-1}^{p-1} \equiv 1 \bmod p^{i-1}$. There is always some $\overline{b_{i}} \in Z / p^{i} Z$ s.t. $\mu_{i, i-1}\left(\overline{b_{i}}\right)=a_{i-1}$. We consider the ${\overline{b_{i}}}^{p}$ in $Z / p^{i} Z$. And define $a_{i}:={\overline{b_{i}}}^{p}$. Note $\mu_{i, 1}\left(a_{i}\right)=$ $\mu_{i-1,1} \circ \mu_{i, i-1}\left(a_{i}\right)=\mu_{i-1,1} \circ \mu_{i, i-1}\left(\bar{b}_{i}^{p}\right)=\mu_{i-1,1}\left(a_{i-1}^{p}\right)$ by the homomorphism property, and note in $\bmod p^{i-1}$, by $a_{i-1}^{p-1} \equiv 1 \bmod p^{i-1}$, we have $a_{i-1}^{p} \equiv a_{i-1} \bmod p^{i-1}$, thus $\mu_{i, 1}\left(a_{i}\right)=\mu_{i-1,1}\left(a_{i-1}{ }^{p}\right)=\mu_{i-1,1}\left(a_{i-1}\right)$. So $\mu_{i, 1}\left(a_{i}\right)=a_{1}$.

Now we need to show that $a_{i}^{p-1} \equiv 1 \bmod p^{i}$. Note $a_{i}^{p-1}=\left(\bar{b}_{i}^{p}\right)^{p-1}$ and by the definition of $\overline{b_{i}}$, we have $\overline{b_{i}}=a_{i-1}+q p^{i}$ for some q, thus $a_{i}^{p-1}=\left(a_{i-1}+q p^{i}\right)^{p p^{p-1}}$. Note in $Z / p^{i} Z$, $\left(a_{i-1}+q p^{i}\right)^{p} \equiv a_{i-1}^{p} . \quad$ So $a_{i}^{p-1} \equiv\left(a_{i-1}^{p}\right)^{p-1}$. And by assumption $a_{i-1}^{p-1} \equiv 1 \bmod p^{i-1}$, $a_{i-1}^{p-1}=1+k p^{i-1}$, for some k. So $a_{i}^{p-1} \equiv\left(a_{i-1}^{p}\right)^{p-1}=\left(1+k p^{i-1}\right)^{p}$, where $\left(1+k p^{i-1}\right)^{p} \equiv 1$ $\bmod p^{i}$. Therefore $a_{i}^{p-1} \equiv 1 \bmod p^{i}$. That finishes the induction, i.e. we found such an $a=\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right)$.

To each $n \in Z / n Z$ with $n \neq 0$, we can construct an A_{n} as we did above. Note, they are different, since each a_{1} is different. And to any such $a=\left(a_{1}, a_{2}, \ldots a_{i}, \ldots\right)$, we have $a^{p-1}=\left(a_{i}^{p-1}\right)=(1)$. So there are $n-1$ roots of $x^{n-1}=1$.

8.1 Problem 8

(a) For $D=-1$ the proof is in the text. First, suppose that $D=-3,-7,-11$; then $O=Z\left[\frac{1+\sqrt{D}}{2}\right]$; we can write this as the set of numbers $\frac{a}{2}+\frac{b}{2} \sqrt{D}$, where $a, b \in \mathbb{Z}$ and $a \equiv b$ $\bmod 2$. Let $\alpha=a+b \sqrt{D}$ and let $\beta=c+d \sqrt{D}$. Write $\gamma=\alpha / \beta=r+s \sqrt{D}$. Let n be an integer, which is closest to the rational number s, and let m be an integer that minimizes $|r-m-n / 2|$. We let $\delta=m+n \frac{1+\sqrt{D}}{2} \in O$. We claim that $N(\alpha-\beta \delta)<N(\beta)$, which gives us the Euclidean algorithm. $N(\alpha-\beta \delta)=N(\beta) N(\gamma-\delta)$, so it suffices to check that $N(\gamma-\delta)<1$. We have
$N(\gamma-\delta)=N((r-m-n / 2)+(s-n / 2) \sqrt{D})=(r-m-n / 2)^{2}+|D|(s-n / 2)^{2} \leq$ $1 / 4+|D| / 16=\frac{4+|D|}{16}<1$.
Now if $D=-2$. We do the same process as above to define γ, but then we choose m and n so that $|s-n|$ and $|r-m|$ are minimized. Then again we just need to check that $N(\gamma-\delta)<1$. But $N(\gamma-\delta)=(r-m)^{2}+2(s-n)^{2} \leq \frac{1}{4}+\frac{2}{4}<1$. That finishes the proof.

8.1 Problem 9

First of all, it is clear that $Z[\sqrt{2}]$ is an integral domain since it is contained in R. For each element $a+\sqrt{2} b \in Z[\sqrt{2}]$, define $N(a+\sqrt{2} b)=\left|a^{2}-2 b^{2}\right|$ to be a norm. Also, it is multiplicative: $N(x y)=N(x) N(y)$. Now we can show the existence of a Division Algorithm as follows. Let $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}$ be arbitrary elements in $Z[\sqrt{2}]$, where $a, b, c, d \in Z$. We have:
$\frac{x}{y}=\frac{a+b \sqrt{2}}{c+d \sqrt{2}}=\frac{(a c-2 b d)+(b c-a d) \sqrt{2}}{c^{2}-2 d^{2}}=r+s \sqrt{2}$, where $r=\frac{a c-2 b d}{c^{2}-2 d^{2}}$ and $s=\frac{b c-a d}{c^{2}-2 d^{2}}$. Let m be an integer closest to the rational number r and let n be an integer closest to the rational number s, so that

$$
|r-m| \leq \frac{1}{2} \text { and }|s-n| \leq \frac{1}{2} .
$$

Let $t:=r-n+(s-m) \sqrt{2}$. Then we have $t=r+s \sqrt{2}-(n+m \sqrt{2})=\frac{x}{y}-(n+m \sqrt{2}) y$. $y t=x-(n+m \sqrt{2}) y \in Z[\sqrt{2}]$.
Thus we have $x=(n+m \sqrt{2}) y+y t(*)$, with $n+m \sqrt{2}, y t \in Z[\sqrt{2}]$.

We have $N(t)=\left|(r-n)^{2}-2(s-m)^{2}\right| \leq|r-n|^{2}+2|s-m|^{2} \leq \frac{1}{4}+2 \cdot \frac{1}{4}=\frac{3}{4}$. It follows from the multiplicativity of the norm N that $N(y t)=N(y) N(t) \leq \frac{3}{4} N(y)<N(y)$. Thus the expression $(*)$ gives a Division Algorithm with quotient $n+m \sqrt{2}$ and remainder $y t$.

8.2 Problem 6

(a) Let S be the set of all ideals of R that are not principal, and let $C_{k k \in I}$ be a totally ordered set (under inclusion) in S. The chain $C_{k k \in I}$ has as upper bound $\cup_{s_{k} \in I} C_{k}$, which is a ideal by the union of ideals is an ideal. If this union is principal, then we assume it is $\langle d\rangle$ but d would have to stay in some C_{k} for some k, implying $\left.C_{k}=<d\right\rangle$, a contradiction, thus the union is not principal. Thus every totally ordered set in S has an upper bound, a maximal element of S exists by Zorn's Lemma.
(b) Note $I \subset I_{a}$ but $I \neq I_{a}$, thus by maximality, I_{a} has to be principal. Similarly I_{b} is principal, say $=(\alpha)$. And by definition of J we have $I \subset J$, and by $b I_{a} \subset I$, we have $b \in J$, thus $I \varsubsetneqq I_{b} \subset J$, so by maximality, J is principal, say $=(\beta)$.

Now we have $I_{a} J=(\alpha)(\beta)=(\alpha \beta)$, and by the definition of J, we have $I_{a} J \subset I$.
(c) Note $I \subset I_{a}=(\alpha)$, thus any $x \in I$, we have $x=s \alpha$, by the definition of $J, s \in J$. Thus $I \subset I_{a} J$. Thus $I=I_{a} J=(\alpha \beta)$, contradiction. Thus R is a PID.

8.3 Problem 6

(a) To any $a+b i \in Z[i] /(1+i), a+b i=a-b$. Thus any element can be represented by an integer. Note $1=1 \cdot 1=(-i) \cdot(-i)=-1$, i.e. $2=0$, Thus every even integer is 0 and every odd integer equals to 1 . Thus we can get every element is either 1 or 0 . Thus $Z[i] /(1+i)$ is a field of order 2.
(b) Note (q) is prime (since q is prime and the ideal generated by prime element is prime), thus $Z[i] /(q)$ is an integral domain. Also note $a+b i \in Z[i] /(q), a, b \bmod q$, thus there are $q \times q=q^{2}$ elements in $Z[i] /(q)$. Therefore $Z[i] /(q)$ is a finite integral domain, which is hence a field.
(c) With the same reason as (b), $Z[i] /(p)$ has order p^{2}. Since $\pi, \bar{\pi}$ are coprime ($\pi, \bar{\pi}$ are irreducible by proposition 18), and $Z[i]$ is a PID, there exists $a, b \in Z[i]$, s.t. $a \pi+b \bar{\pi}=1$, thus comaximal. Thus by Chinese remainder theorem, $Z[i] /(p) \cong Z[i] /(\pi) \times Z[i] /(\bar{\pi})$. Note $Z[i] /(\pi), Z[i] /(\bar{\pi})$ are symmetrical, thus $|Z[i] /(\pi)|=|Z[i] /(\bar{\pi})|=p$.

9.1: Problems 5

$Z[x, y] /\langle x, y\rangle \cong Z$, which is a domain and hence $\langle x, y\rangle$ is a prime ideal.
$Z[x, y] /<2, x, y>\cong Z / 2 Z$, which is a field and hence $\langle 2, x, y>$ is a maximal ideal. That finishes the proof.

9.1: Problems 17

If I is a homogeneous ideal, consider the generating set A, and B as the set of the homogeneous components of the elements in A. By definition, $B \subset I$, so $(B) \subset I$. But $I=(A) \subset(B)$, so $(B)=I$, hence I is generated by homogeneous polynomials.
Conversely, if I is generated by homogeneous polynomials, say $\left\{a_{i}\right\}_{i \in T}$. To any poly $p(x)$ in I, we can express as $\sum\left(g_{i, 1}+g_{i, m_{i}}\right) a_{i}$, where each $g_{i, m_{j}}$ is homogeneous, and recall each a_{i} is also homogeneous, thus each $g_{i, m_{j}} a_{l}$ is homogeneous. assume the minimum degree of polys in I is k. Then if $p \in I$ is of degree k, its homogeneous component is itself, so its homogeneous component is in I. Now assume any poly in I with degree n is with each homogeneous component is also in I. Now to any poly in I with degree $n+1$, we can express $\sum h_{i} a_{i}+\sum k_{i} a_{i}$, where $\sum h_{i} a_{i}$ is the part of degree at most n, and the $\sum k_{i} a_{i}$ is the homogeneous component of degree $n+1$. Note $\sum h_{i} a_{i} \in I$, by induction its each homogeneous component is in I and $\sum k_{i} a_{i} \in I$, thus we finished the induction, i.e. I is homogeneous.

9.2: Problems 5

By the Fourth Isomorphism Theorem for rings, $I /(p(x))$ is an ideal of $F[x] /(p(x))$ if and only if I is an ideal of $F[x]$ containing $p(x)$. Since $F[x]$ is a PID, we get $I=(f(x))$ for some $f(x) \in F[x]$. Since $(p(x)) \subset(f(x))$, we have $f(x) \mid p(x)$. Note $F[x]$ is a UFD, thus we can factorise $p(x)=p_{1}(x) \ldots p_{n}(x)$. Then any ideal $I /(p(x))$ is in the form of $\left(g_{1}(x), \ldots g_{m}(x)\right) /(p(x))$, where $g_{i}(x) s$ are distinct elements of $\left\{p_{1}(x), \ldots p_{n}(x)\right\}$.

10.1: Problems 19

Since the $F[x]$-submodules of V are precisely the T-invariant subspace of V. We see that $T(0)=0 \in V, T(V) \subset V, T(x$-axis $)=0 \subset x$-axis and $T(y$-axis $)=y$-axis $\subset y$-axis. Hence, these are $F[x]$-modules.

To a submodule W, if $(t, z) \in W$ with $t, z \neq 0$, then $x \cdot(t, z)=(t, 0)$, thus x-axis is in W. And by $(t, z)+(n, 0)$ for any $n \in R$, we have $y=z$ is in W, to any $m \in R$, $\frac{m}{z} \cdot(t, z)=\left(\frac{m}{z} t, m\right) \in W$, thus by above $y=m$ is in W. Thus $W=V$.
Now if W doesn't contain $(t, z) \in W$ with $t, z \neq 0$, then it's easy to see $W=0$ or y-axis or x-axis by F-action.

10.2: Problems 13

Since I is nilpotent, we assume $I^{r}=0$. By $\bar{\psi}$ is onto, any $n+I N \in N / I N$, we have $m \in M$, s.t. $\bar{\psi}(m+I M)=n+I N$. Thus $n+I N \in \psi(M)+I N$. By $N=\cup n+I N, n \in N$, we have $N=\psi(M)+I N$. Thus $N=\psi(M)+I(\psi(M)+I N)=\psi(M)+I^{2} N$. Keep doing this, we get $N=\psi(M)+I^{r} N=\psi(M)$. That finishes the proof.

10.3: Problems 23

Let $\left\{M_{i}\right\}_{i \in I}$ be a collection of free R-modules, each with basis A_{i}. We claim that $\bigoplus_{i \in I} M_{i}$ is free over $\cup_{i \in I} A_{i}$. Letting $m \bigoplus_{i \in I} M_{i}$ we know we can write m as a finite sum $m=$ $m_{i 1}+\ldots+m_{i k}$ with $m_{i j} \in M_{i j}$. Furthermore this expression of m is unique since the coordinates in a direct sum are independent. But each $m_{i j}$ has a unique representation over the basis $A_{i j}$. Hence we can express m over the basis $\cup_{i \in I} A_{i}$, and furthermore this representation of m is unique. This proves the result.

10.3: Problems 27

(a) $\varphi_{1} \psi_{1}\left(a_{1}, a_{2}, \ldots\right)=\varphi_{1}\left(a_{1}, 0, a_{2}, 0, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)$, i.e. $\varphi_{1} \psi_{1}=1$. Similarly, $\varphi_{2} \psi_{2}=1$. $\varphi_{1} \psi_{2}\left(a_{1}, a_{2}, \ldots\right)=\varphi_{1}\left(0, a_{1}, 0, a_{2}, 0, \ldots\right)=(0,0, \ldots)$, thus $\varphi_{1} \psi_{2}=0$, similarly, $\varphi_{2} \psi_{1}=0$. And $\left(\psi_{1} \varphi_{1}+\psi_{2} \varphi_{2}\right)\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, 0, a_{3}, 0 \ldots\right)+\left(0, a_{2}, 0, a_{4}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$, thus $\psi_{1} \varphi_{1}+\psi_{2} \varphi_{2}=1$.
Now if $a_{1}, a_{2} \in R$, we assume $a_{1} \varphi_{1}+a_{2} \varphi_{2}=0$, then $a_{1}=\left(a_{1} \varphi_{1}+a_{2} \varphi_{2}\right) \psi_{1}=0$, similarly, $a_{2}=\left(a_{1} \varphi_{1}+a_{2} \varphi_{2}\right) \psi_{2}=0$, thus φ_{1}, φ_{2} are independent. Note to any $x \in R$, we have $\left(x \psi_{1}\right) \varphi_{1}+\left(x \psi_{2}\right) \varphi_{2}=x$. Thus φ_{1}, φ_{2} generate R.
(b) By part (a), we have $R \cong R^{2}$, and by induction, to any n, we have $R \cong R^{n}$.

10.4: Problems 1

First it's easy to see $s \cdot t \in S$ for any $s \in S, t \in R$. Note $s \cdot 1=s \times f(1)=s \times 1=s$. And $s \cdot(x y)=s f(x y)=s f(x) f(y)=(s \cdot x) \cdot y$. So $s \cdot r=s f(r)$ defines a right R-action on S. And there is a canonical left S-action on S by multiplication. Thus S is a (S, R)-bimodule.

10.4: Problems 7

Any $\frac{m}{d} \otimes t \in Q \otimes_{R} N$, since Q is also an R-module, we have $\frac{m}{d} \otimes t=m\left(\frac{1}{d} \otimes t\right)=\frac{1}{d} \otimes m \cdot t$. And $d \in R, m \cdot t \in N$. That finishes the proof.

10.4: Problems 25

Define $f: S \otimes_{R} R[x] \rightarrow S[x]$ by $f(s, p(x)) \mapsto s p(x)$. Note by $f\left(\left(s_{1} \otimes p_{1}(x)\right)\left(s_{2} \otimes p_{2}(x)\right)=\right.$ $f\left(s_{1} s_{2} \otimes p_{1}(x) p_{2}(x)\right)=s_{1} s_{2} p_{1}(x) p_{2}(x)=f\left(s_{1} \otimes p_{1}(x)\right) f\left(s_{2} \otimes p_{2}(x)\right)$. And it's easy to see that $f(a(s \otimes p(x))=a f(s \otimes p(x))$. Thus f is an algebra-homomorphism.
f is onto, since any $p(x) \in S[x]$ is in the form of $\sum_{i=1}^{n} a_{i} x^{i}$, then $f\left(\sum_{i=1}^{n} a_{i} \otimes x^{i}\right)=$ $\sum_{i=1}^{n} a_{i} x^{i}=p(x)$.
If $f\left(\sum a_{i} \otimes x^{i}\right)=0$, then $\sum a_{i} x^{i}=0$, thus $a_{i}=0$ for each i, thus $\sum a_{i} \otimes x^{i}=0$, hence f is injective, thus f is an isomorphism.

10.5: Problems 12

(a) There is a canonical injection $I_{i}: B_{i} \rightarrow \bigoplus_{i \in I} B_{i}$. Then it induces a map

$$
\varphi_{i}: \operatorname{Hom}_{R}\left(\bigoplus_{i \in I} B_{i}, A\right) \rightarrow \operatorname{Hom}_{R}\left(B_{i}, A\right)
$$

by sending $\alpha \mapsto \alpha \circ I_{i}$. Note $\operatorname{Hom}_{R}\left(\bigoplus_{i \in I} B_{i}, A\right)$ and $\prod_{i} \operatorname{Hom}_{R}\left(B_{i}, A\right)$ are abelian groups, by the universal property of the direct product of abelian groups, there is a homomorphism

$$
\Phi: \operatorname{Hom}_{R}\left(\bigoplus_{i \in I} B_{i}, A\right) \rightarrow \prod_{i} \operatorname{Hom}_{R}\left(B_{i}, A\right)
$$

s.t. $\pi_{i} \circ \Phi=\varphi_{i}$, where π_{i} is the $i^{\text {th }}$ natural projection from the direct product.

If $\Phi(a)=0$, then $a \circ I_{i}=\varphi_{i}(a)=\pi_{i} \circ \Phi(a)=0$, thus $a=0$, thus Φ is injective.
To $\phi=\prod_{i} \phi_{i} \in \prod_{i} \operatorname{Hom}_{R}\left(B_{i}, A\right)$. Define $a_{\phi}: \oplus_{I} B_{i} \rightarrow A$ by $a_{\phi}\left(b_{i}\right)=\sum \phi_{i}\left(b_{i}\right)$. It's easy to see $a_{\phi} \in \operatorname{Hom}_{R}\left(\bigoplus_{i \in I} B_{i}, A\right)$. Now $\pi_{i}\left(\Phi\left(a_{\phi}\right)\right)(b)=\varphi_{i}\left(a_{\phi}\right)(b)=a_{\phi}\left(I_{i}(b)\right)=\phi_{i}(b)$, thus $\Phi\left(a_{\phi}\right)=\phi$, thus Φ is onto.
Now to any $r \in R, \Phi(r a)=\prod_{i}\left((r a) \circ I_{i}\right)=\prod_{i}\left(r a \circ I_{i}\right)=r \prod_{i}\left(a \circ I_{i}\right)=r \Phi(a)$, thus Φ is an R-module homomorphism, hence R-module isomorphism.
(b) We define $\varphi_{i}: \operatorname{Hom}_{R}\left(A, \prod_{i} B_{i}\right) \rightarrow \operatorname{Hom}_{R}\left(A, B_{i}\right)$ by $\varphi_{i}(a)=\pi_{i} \circ a$. Now by the universal property of the direct product of abelian groups, there is a homomorphism

$$
\Phi: \operatorname{Hom}_{R}\left(A, \prod_{i} B_{i}\right) \rightarrow \prod_{i} \operatorname{Hom}_{R}\left(A, B_{i}\right)
$$

s.t. $\pi_{i} \circ \Phi=\varphi_{i}$. Similar to part (a), we have Φ is injective and also a R-module homomorphism.
Now consider $\phi=\prod_{i} \phi_{i} \in \prod_{i} \operatorname{Hom}_{R}\left(A, B_{i}\right)$. Define $a_{\phi}: A \prod_{i} B_{i}$ as $\pi_{i} a_{\phi}(b)=\phi_{i}(b)$. Clearly, a_{ϕ} is a homomorphism. $\pi_{i} \Phi\left(a_{\phi}\right)(b)=\varphi_{i} a_{\phi}(b)=\pi_{i} a_{\phi}(b)=\phi_{i}(b)$.Therefore $\pi_{i} \Phi\left(a_{\phi}\right)=\phi_{i}$, thus $\Phi\left(a_{\phi}\right)=\phi$. Thus Φ is onto, that finishes the proof.

10.5: Problems 16

(a) Since M is an abelian group, thus M is a Z-module, by Corollary $37, M$ is contained in an injective Z-module Q.
(b) Since $M \subset Q$, there is an inclusion $i: M \rightarrow Q$, which induces a map $i^{*}: \operatorname{Hom}_{Z}(R, M) \rightarrow$ $\operatorname{Hom}_{Z}(R, Q)$ by composition any $\phi \in \operatorname{Hom}_{Z}(R, M)$ to $i \circ \phi \in \operatorname{Hom}_{Z}(R, Q)$.
Any $f \in \operatorname{Hom}_{R}(R, M)$, is also an abelian group homomorphism since R, M are abelian groups, and an abelian group homomorphism is a Z - module homomorphism, thus $f \in$ $\operatorname{Hom}_{Z}(R, M)$, thus $\operatorname{Hom}_{R}(R, M) \subset \operatorname{Hom}_{Z}(R, M)$. That finishes the proof.
(c) If M is an R-module, by exercise $10.5 .10(\mathrm{~b})$ we have $M \cong \operatorname{Hom}_{R}(R, M)$. By (b), we have $M \subset \operatorname{Hom}_{Z}(R, Q)$. But 10.5.15(c) says that if Q in an injective Z-module, $\operatorname{Hom}_{Z}(R, Q)$ is an injective R-module. Hence, we proved that M is contained in an injective R-module.

10.5: Problems 21

If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of left S-modules, then by N is flat as an
S-module, we have:

$$
0 \rightarrow N \otimes_{S} A \rightarrow N \otimes_{S} B \rightarrow N \otimes_{S} C \rightarrow 0
$$

which can be seen as an exact sequence of left R-modules.
By M is a right R-module, we have

$$
0 \rightarrow M \otimes_{R}\left(N \otimes_{S} A\right) \rightarrow M \otimes_{R}\left(N \otimes_{S} B\right) \rightarrow M \otimes_{R}\left(N \otimes_{S} C\right) \rightarrow 0
$$

By tensor product associativity, we have:

$$
0 \rightarrow\left(M \otimes_{R} N\right) \otimes_{S} A \rightarrow\left(M \otimes_{R} N\right) \otimes_{S} B \rightarrow\left(M \otimes_{R} N\right) \otimes_{S} C \rightarrow 0
$$

Therefore $M \otimes_{R} N$ is flar as a right S-module.

10.5: Problems 25

(a) There is an exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$. If A is flat, then $0 \rightarrow A \otimes_{R} I \rightarrow$ $A \otimes_{R} R \rightarrow A \otimes_{R} R / I \rightarrow 0$ is exact, thus $A \otimes_{R} I \rightarrow A \otimes_{R} R$ is injective.
(b) (1) Suppose now that the element $\sum a_{i} \otimes_{R} I_{i} \in A \otimes_{R} I$ is mapped to 0 by $1 \otimes \psi$. This means that the element $\sum a_{i} \otimes_{R} \psi\left(I_{i}\right)$, can be written as a sum of generators. Since this sum of elements is finite, all of the second coordinates of the resulting equation lie in some finitely generated submodule I^{\prime} of I. Then this equation implies that $\sum a_{i} \otimes_{R} I_{i} \in A \otimes_{R} I^{\prime}$ is mapped to 0 in $A \otimes_{R} R$. Since I^{\prime} is a finitely generated module, the injectivity by assumption shows that $\sum a_{i} \otimes_{R} I_{i}$ is 0 in $A \otimes_{R} I^{\prime}$ and also in in $A \otimes_{R} I$.
(2) Assume $F \cong R^{n}$, then $K \cong R^{n} / I$, by $A \otimes F \cong A^{n}$, and $K \cong A^{n} / A \otimes I$, it's easy to see $K \cong A^{n} / A \otimes I \rightarrow A^{n} \cong A \otimes F$ is injective. (Note by $A \otimes R \cong A$, the map $A \otimes I \rightarrow A I$ is onto, so now it's an isomorphism.)
(3) Similar to (1), if the element $\sum a_{i} \otimes_{R} k_{i} \in A \otimes_{R} K$ is mapped to 0 , then by this sum of elements is finite, $\sum a_{i} \otimes_{R} k_{i}$ is contained in some $A \otimes_{R} K^{\prime}$, where K^{\prime} is a sub-module of a finitely generated free sub-module $F^{\prime} \subset F\left(K^{\prime}:=K \cap F^{\prime}\right.$, thus is also contained in $\left.K\right)$ and is mapped to $0 \in A \otimes_{R} F^{\prime}$, and by (2), $\sum a_{i} \otimes_{R} k_{i}=0$ in $0 \in A \otimes_{R} K^{\prime}$ and also in in $A \otimes_{R} K$.
(c) For the first diagram, the map $g: J \rightarrow L$ can be defined as $\psi^{-1} \circ f$ (note ψ is injective), and note the image of K in F is just kerf, thus $K \subset f^{-1}(\psi(L)=J$, hence the map $p: K \rightarrow J$ (induced by $h: K \rightarrow F$) is the inclusion. Moreover since ϕ is injective, $\operatorname{ker} \psi^{-1} \circ f=\operatorname{ker} f$, which is just the image of K in J, thus the top sequence of the first diagram is exact. Note $\psi \circ g(a)=\psi \circ \psi^{-1} \circ f=f \iota(a)$, and $\iota \circ p(a)=\iota \circ f(a)=p(a)=p \circ i d(a)$. Thus the first diagram is commutative.
For the second diagram, recall the tensor product is right exact, thus this diagram is commutative with exact rows.

Now by (b), $1 \otimes \iota$ is injective, and by part (d) of exercise $1,1 \otimes \psi$ is injective, thus by the definition of flatness, A is flat.
(d) Since F is flat, by (a), $F \otimes_{R} I \rightarrow F \otimes_{R} R \cong F$ is injective, thus $F \otimes I \subset F \otimes R$ is mapped to $F I$ by $f \otimes i \mapsto f i$, therefore K as a submodule of F, the image of $K \otimes I$ is just $K I$ by the injectivity and $k \otimes i \mapsto k i$.
Tensor I with the exact sequence $0 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0$, recall tensor product is right exact, thus we get the exact sequence $K \otimes I \xrightarrow{f} F \otimes I \xrightarrow{g} A \otimes I \rightarrow 0$. Note the image of $K \otimes I$ is just $K I$, thus by exactness $A \otimes I=F \otimes I / \operatorname{kerg}=F \otimes I / \operatorname{Imf}=F \otimes I / K \otimes I=F I / K I$.
(1) If $F I \cap K=K I$, then $A \otimes I=F I / K I=F I /(F I \cap K)$. Consider the quotient map $\phi: F \rightarrow A$ and the restriction to $F I$, which sends $\sum f_{j} i_{j}$ to $\phi\left(\sum f_{j} i_{j}\right)=\sum \phi\left(f_{j}\right) i_{j} \in A I$, it's easy to see $\phi(F I)=A I$. Since $\operatorname{ker} \phi=K$, we have $\left.\operatorname{ker} \phi\right|_{F I}=K \cap F I$, thus $F I /(F I \cap K) \cong(F / K) I=A I$, thus $A \otimes I \cong A I$, thus A is flat.
(2) If A is flat, then $A \otimes I=A I$, thus $F I / K I=(F / K) I \cong F I /(F I \cap K)$, hence $F I / K I \cong F I /(F I \cap K)$, also note $K I \subset F I \cap K$, thus $F I \cap K=K I$.

