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Abstract

One surprising property of Chung, Graham, and Wilson’s characterization of dense
quasirandom graphs is a polynomial-time verifiable property Cycle4, which states that
the number of copies of the cycle of length four is what one would expect in a random
graph of the same density. Targeting problems like random k-SAT, this algorithm has
been extended in several ways to sparse quasirandomness by several researchers. In
this note, we show how the spectral hypergraph quasirandom property defined by the
authors can be used to create an efficient algorithm that certifies if a sparse hypergraph
is quasirandom. Compared to the existing algorithms, our algorithm certifies a different
version of quasirandomness and has a faster running time, but does not improve upon
the current best bounds for applications like random k-SAT.

1 Introduction

The study of quasirandom or pseudorandom graphs was initiated by Thomason [22, 23] and
then refined by Chung, Graham, and Wilson [8], resulting in a list of equivalent (determinis-
tic) properties of dense graph sequences which are inspired by G(n, p) for p a fixed constant.
One of the more interesting properties is Cycle4, the property that the number of copies of
the cycle of length four is what one would expect in a random graph with the same density.
This property can be tested in an n-vertex graph in polynomial time, leading to an efficient
algorithm to detect if a dense graph is quasirandom. Extending these algorithms to certify
sparse quasirandom graphs in polynomial time has several applications; perhaps the most
striking is to random k-SAT. Friedman, Goerdt, and Krivelevich [13] used sparse quasir-
andom graphs and techniques of Chung, Graham, and Wilson [8] to develop a refutation
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algorithm for random k-SAT. Since then, several researchers [9, 10, 12, 15] have investigated
algorithms that work with progressively smaller and smaller densities. All of these algorithms
have a quasirandom flavor and some certify a version of hypergraph quasirandomness.

Hypergraph quasirandomness has been studied by many researchers [2, 3, 4, 5, 6, 7, 11, 14,
16, 17, 18, 19, 21] and there are many distinct hypergraph quasirandom properties (see [21]).
As a consequence of the spectral hypergraph quasirandomness properties developed by the
authors [19, 20, 21], we obtain an algorithm which certifies hypergraph quasirandomness in
polynomial time. Compared to the existing algorithms [9, 10, 15], our algorithm certifies
a different notion of quasirandomness and is more efficient. Applying our algorithm to the
random k-SAT problem essentially matches but does not improve the best known results.
To state our algorithm, we require a few definitions.

Definition. Let k be an integer. A proper partition π of k is an unordered list of at least
two positive integers whose sum is k. For π = k1 + k2, a partition of k into two parts, define
the cycle of type π and length 2`, denoted Cπ,2`, as follows. Let A1, . . . , A` be sets of size
k1 and let B1, . . . , B` be sets of size k2. Let V (Cπ,2`) = A1∪̇ · · · ∪̇A`∪̇B1∪̇ · · · ∪̇B`. For every
1 ≤ i ≤ `, let Ai ∪ Bi be a hyperedge of Cπ,2`. In addition, for every 1 ≤ i ≤ ` − 1, let
Bi ∪Ai+1 be a hyperedge. Finally, let B` ∪A1 be a hyperedge. [19] gave a general definition
of Cπ,2` for all proper partitions π; the definition given here is a specialization to partitions
into two parts and is all that is required in this paper.

Our algorithm works by counting Cdk/2e+bk/2c,2` and is similar to the algorithm of Hán,
Person, and Schacht [15] which counted C1+···+1,4. The cycle Cdk/2e+bk/2c,2` has significantly
fewer vertices that C1+···+1,4 even for large `. Additionally, the spectral techniques developed
in [19, 20] lead to a fast method of counting cycles by computing the trace of a matrix.

Algorithm 1. On input k ≥ 4, ε, η > 0, and a k-uniform hypergraph H with m edges and
n vertices,

• Let π = bk/2c+ dk/2e.
• Define ` as follows:

` = `ε =

{⌈
k
4ε

⌉
if k is even,⌈

k+1
4
√
k−2

⌉
otherwise.

(1)

• Let N be the number of labeled circuits of type π and length 4` in H.

• If N < (1 + η)(k!)4`m4`n−2`k then output Quasirandom, otherwise output Unknown.

The main result of this paper is the following.

Theorem 1. Let k ≥ 4 and ε, δ > 0 be given. There exists a constant η > 0 depending only
on δ and k such that the following holds. If on input k, ε, η, and a k-uniform, n-vertex,
m-edge hypergraph H Algorithm 1 outputs Quasirandom, then for all S1 ⊆

(
V (H)
dk/2e

)
and all
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S2 ⊆
(
V (H)
bk/2c

)
, ∣∣∣∣∣e(S1, S2)−

k!m

nk
|S1||S2|

∣∣∣∣∣ ≤ δm

nk/2

√
|S1||S2|. (2)

In addition, if

p ≥

{
n−k/2+ε if k is even,

n−k/2+
√
k otherwise,

(3)

then with probability going to one as n goes to infinity, for a hypergraph H drawn from the
distribution G(k)(n, p), Algorithm 1 on input k, ε, η, and H outputs Quasirandom. Finally,
on input of a n-vertex hypergraph Algorithm 1 runs in time O(nkω polylogn) where ω is the
exponent for matrix multiplication.

2 Algorithm Correctness

In this section we prove that Algorithm 1 runs in time O(nkω polylogn) and additionally
prove that if Algorithm 1 outputs Quasirandom then (2) holds. The proof is very similar
to [20, Section 4] and rather than repeat the (extensive) definitions of [19, 20], we will
just use identical notation and definitions as [19, 20]. The definitions we require are the
definitions of the adjacency map and the first and second largest eigenvalues [19, Section 3]
and the definitions of the powers of the adjacency map [19, Section 6.1]. We also require a
proposition on counting circuits [19, Proposition 7], two algebraic properties of multilinear
maps ([20, Lemma 9] and [20, Proposition 2]), and the hypergraph expander mixing lemma
[19, Theorem 4].

Proof of the running time of Algorithm 1. If we count labeled circuits directly, then Algo-
rithm 1 runs in time O(n2k`) since Cπ,4` has 2k` vertices. For k even this is nO(k2) and

for k odd is nO(k3/2). Using [19, Proposition 7], an alternate way of counting labeled cir-
cuits is to compute the trace of A[τ 2~π ]2`. The matrix A = A[τ 2~π ] can be computed in time
O(n2k polylogn) since there are n2bk/2c basis vectors on which to evaluate τ~π ∗ τ~π and each
evaluation takes O(ndk/2e) multiplications. Note that the maximum size of entries of A is n2k`.
Since A is an n2bk/2c × n2bk/2c-matrix, using repeated squaring we can compute A2` in time
O(nkω log ` polylogn), where ω is the exponent for matrix multiplication. Thus Algorithm 1
runs in time O(nkω polylogn).

Proof of Algorithm 1 correctness. We prove that if Algorithm 1 outputs Quasirandom then
equation (2) holds. Let k, ε, δ, π, and ` be defined as in the theorem and let H be any
k-uniform hypergraph with m edges and n vertices. We need to prove that there exists
an η > 0 so that if the number of labeled circuits of type π and length 4` is at most
(1 + η)(k!)4`m4`n−2`k, then (2) holds. This proof is very similar to the proof that Cycle4`[π]
⇒ Eig[π] and we use the same notation. Let 1̂ denote the all-ones vector scaled to unit length,
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let A = A[τ 2~π ], and let µ1, . . . , µd be the eigenvalues of A arranged so that |µ1| ≥ · · · ≥ |µd|.
Since µ2`

i ≥ 0, [19, Proposition 7] implies that

µ2`
1 ≤ µ2`

1 + µ2`
2 ≤ Tr

[
A2`
]

= #{possibly degenerate Cπ,4` in H} ≤ (1 + η)
(k!)4`m4`

n2`k
. (4)

Using [20, Lemma 9] and (4), we have that

k!m

nk/2
= τ~π(1̂, . . . , 1̂) ≤ ‖τ~π‖ ≤

√
µ1 ≤ (1 + η)1/4`

k!m

nk/2
.

Combining this with (4), we obtain

k!2m2

nk
≤ µ1 ≤ (1 + η)1/2`

k!2m2

nk
and µ2 ≤ η1/2`

k!2m2

nk
.

Since τ~π(1̂, . . . , 1̂)2 = k!2m2

nk , [20, Proposition 2] implies that given δ > 0, it is possible to
choose η > 0 such that λ2,π(H) = ‖τ~π − qJ~π‖ ≤ δ m

nk/2 . Finally, the Hypergraph Expander

Mixing Lemma [19, Theorem 4] shows that for all S1 ⊆
(
V (H)
dk/2e

)
and all S2 ⊆

(
V (H)
bk/2c

)
∣∣∣∣e(S1, S2)−

k!m

nk
|S1||S2|

∣∣∣∣ ≤ λ2,π(H)
√
|S1||S2| ≤

δm

nk/2

√
|S1||S2|.

3 Counting Circuits in G(k)(n, p)

All that remains to prove Theorem 1 is to prove that for almost all k-uniform hypergraphs
with probability satisfying (3), Algorithm 1 outputs Quasirandom. This is proved in two
steps; let G be a hypergraph drawn from the distribution G(k)(n, p). We first prove that
the expected number of labeled circuits in G is (1 + o(1))p4`n2k` (note that Cπ,4` has 4`
edges and 2k` vertices, but the proof is complicated by the presence of degenerate cycles).
Second, we use the second moment method to prove that with high probability the number
of labeled circuits in G is close to the expectation. This in turn will imply that w.h.p.
Algorithm 1 outputs Quasirandom, since w.h.p. |E(G)| = (1 + o(1))p

(
n
k

)
so that w.h.p.

(1+o(1))p4`n2k` = (1+o(1))(k!)4`|E(G)|4`n−2k`, which is the bound checked by Algorithm 1.
A degenerate cycle of type π and length 4` is a k-uniform hypergraph H for which there exists
an edge-preserving surjection φ : V (Cπ,4`)→ V (H) where φ is not an injection.

Lemma 2. Let k ≥ 2, ` ≥ 1, and π = bk/2c+ dk/2e. Let H be a degenerate cycle of type π
and length 4` with v vertices and e edges. Then

e ≥

{
v
dk/2e if v > 2`

⌈
k
2

⌉
+
⌊
k
2

⌋
,

v
dk/2e − 1 otherwise.
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Proof. Let φ : V (Cπ,4`) → V (H) be an edge-preserving surjection. Let E1, . . . , E4` be the
edges of Cπ,4`, so that φ(E1), . . . , φ(E4`) are the edges of H (possibly with repetitions). Since
φ is edge-preserving, |φ(E1) ∩ φ(E2)| ≥ bk/2c so if φ(E2) is a distinct edge from φ(E1) then
φ(E2) has at most dk/2e vertices outside φ(E1). Similarly, if φ(E3) is an edge of H distinct
from φ(E1) and φ(E2) then it can have at most dk/2e vertices of H outside φ(E1)∪φ(E2) since
φ(E3) must intersect φ(E2) in at least bk/2c vertices. In general, if φ(Ei) is an edge distinct
from φ(E1), . . . , φ(Ei−1) then it can have at most dk/2e vertices of H outside ∪j<iφ(Ej).
Since H has no isolated vertices (φ is an edge-preserving surjection),

v = |V (H)| =
∣∣∣ ∪ φ(Ei)

∣∣∣ ≤ |φ(E1)|+ (e− 1)

⌈
k

2

⌉
= k + (e− 1)

⌈
k

2

⌉
(5)

⇔ v − bk/2c ≤ e dk/2e

⇔ v

dk/2e
− 1 ≤ v − bk/2c

dk/2e
≤ e.

Now assume that v > 2`
⌈
k
2

⌉
+
⌊
k
2

⌋
. We show that the lower bound on e from the previous

paragraph can be improved by one. First, assume that for all i, there exists a j 6= i such
that φ(Ei) = φ(Ej). Since each edge of H has at least two edges of Cπ,4` mapped to it,
e = |E(H)| ≤ 1

2
|E(Cπ,4`)| = 2`. Define disjoint vertex sets A1, . . . , A4` ⊆ V (Cπ,4`) such that

Ei = Ai ∪ Ai+1 for i < 4` and E4` = A4` ∪ A1. Now define an auxiliary graph G as follows.
First, set V (G) = {φ(Ai) : 1 ≤ i ≤ 4`}. (Note this is somewhat subtle: for each set φ(Ai)
we create a vertex of G, except if for some i 6= j we have φ(Ai) = φ(Aj), in which case the
same vertex of G is used. On the other hand, if φ(Ai) ∩ φ(Aj) 6= ∅ but φ(Ai) 6= φ(Aj), then
separate vertices of G are created.) For each hyperedge φ(Ei) of H with i < 4`, add a graph
edge between φ(Ai) and φ(Ai+1); in addition, add an edge between φ(A4`) and φ(A1). The
number of edges of G is the same as the number of hyperedges of H so |E(G)| = e ≤ 2`. Also,
G is connected since H is a degenerate cycle. Since G is connected with at most 2` edges,
G has at most 2`+ 1 vertices. Each vertex of G translates into at most dk/2e vertices of H,
but if k is odd there must be at least one vertex of G representing a set of size bk/2c. Thus
|V (H)| ≤ 2` dk/2e+ bk/2c, which contradicts our assumption that v > 2` dk/2e+ bk/2c.

Thus we can assume that there exists some Ei such that for all j 6= i, φ(Ei) 6= φ(Ej). By
symmetry, relabel the edges of the cycle so that i = 1, i.e. for all j 6= 1, φ(E1) 6= φ(Ej). One
of the two (or both) of the following occur:

• φ(A1) ⊆
⋃
i>1 φ(Ai),

• φ(E4`) is distinct as an edge of H from φ(E1), . . . , φ(E4`−1).

Indeed, assume that φ(A1) is not contained in ∪i>1φ(Ai). Since φ(E4`) includes φ(A1) and
φ(E2) ∪ · · · ∪ φ(E4`−1) = ∪i>1φ(Ai), φ(E4`) is distinct from φ(E2), . . . , φ(E4`−1). But by
assumption, φ(E1) 6= φ(E4`), so that φ(E4`) is distinct as a hyperedge of H.

Assume that φ(A1) ⊆ ∪i>1φ(Ai), and consider the argument from the first paragraph:
consider edges of the cycle one by one starting from E1. Each φ(Ej) which is distinct can add
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at most dk/2e new vertices to the union ∪1<i≤jφ(Ai), since φ(Ej) must share at least bk/2c
with φ(Ej−1). Since φ(A1) is a subset of ∪i>1φ(Ai), the inequality in (5) can be improved to

v = |∪i>1φ(Ai)| ≤ e

⌈
k

2

⌉
.

Now assume that φ(E4`) is distinct as an edge of H from φ(E1), . . . , φ(E4`−1). By definition,
φ(E4`) shares φ(A4`) with φ(E4`−1) and shares φ(A1) with φ(E1). Thus φ(E4`) is a hyperedge
of H distinct from φ(E1), . . . , φ(E4`−1) which does not use any new vertices. We can therefore
improve the bound on the number of edges by one.

Lemma 3. Let k be an even integer at least 4, ε > 0, π = k/2 + k/2, and ` as defined in
(1). For p ≥ n−k/2+ε, the expected number of labeled, degenerate circuits of type π and length
4` in G(k)(n, p) is o(p4`n2k`).

Proof. We need to prove that for every degenerate cycle H of type π and length 4` we have
p|E(H)|n|V (H)| = o(p4`n2k`). Indeed, the expected number of labeled copies of H in G(k)(n, p)
is p|E(H)|n|V (H)| and there are constantly many degenerate cycles since ` and k are constants
independent of n and p. Thus if p|E(H)|n|V (H)| = o(p4`n2k`) for all H, the expected number
of degenerate cycles is o(p4`n2k`).

Let H be a degenerate cycle of type π and length 4` with v vertices and e edges. We
need to prove that penv = o(p4`n2k`). Substituting in p, we need to prove that

nv−
ek
2
+eε = o(n2k`− 4`k

2
+4`ε),

i.e. we need to prove that

v − e
(
k

2
− ε
)
< 4`ε. (6)

Case 1: v > `k + k
2
. By Lemma 2, e ≥ 2v

k
. If e = 4`, then H has the same number of

edges as Cπ,4` but fewer vertices so trivially penv = o(p4`n2k`). Thus e < 4` which implies
that v ≤ 2k`− k

2
, since the map φ : V (Cπ,4`)→ V (H) must map at least two sets of size k/2

in V (Cπ,4`) to the same vertex set in H. Inserting these bounds into (6) and simplifying, we
obtain

v − e
(
k

2
− ε
)
≤ v − 2v

k

(
k

2
− ε
)

=
2vε

k
≤ 2ε

k

(
2k`− k

2

)
= 4`ε− ε < 4`ε.

Case 2: v ≤ `k+ k
2
. By Lemma 2, we have that e ≥ 2v

k
− 1. Inserting these bounds into

(6), we obtain

v − e
(
k

2
− ε
)
≤ v −

(
2v

k
− 1

)(
k

2
− ε
)

=
2vε

k
+
k

2
− ε ≤ 2ε

k

(
`k +

k

2

)
+
k

2
− ε

= 2`ε+
k

2
.
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Thus to prove (6), we require

2`ε+
k

2
< 4`ε ⇔ k

4ε
< `,

which is true by the definition of `.

Lemma 4. Let k be an odd integer at least 5, π = bk/2c + dk/2e, and ` as defined in (1).

For p ≥ n−k/2+
√
k, the expected number of labeled, degenerate cycles of type π and length 4`

in G(k)(n, p) is o(p4`n2k`).

Proof. Similar to the previous proof, we need to prove that p|E(H)|n|V (H)| = o(p4`n2k`) for all
degenerate cycles H. Let H be a degenerate cycle of type π and length 4` with v vertices
and e edges. Substituting in the value of p, we need to prove that

v − e
(
k

2
−
√
k

)
< 4`
√
k. (7)

Case 1: v > 2` dk/2e + bk/2c. In this case, Lemma 2 implies that e ≥ v/ dk/2e. If e = 4`,
then H has the same number of edges as Cπ,4` but fewer vertices so trivially penv = o(p4`n2k`).
Thus e < 4` which implies that v ≤ 2k`− bk/2c, since the map φ : V (Cπ,4`)→ V (H) must
map at least two sets of size bk/2c in V (Cπ,4`) to the same vertex set in H. Starting from
(7), plugging in these two bounds on v and e, and using that k ≥ 5 we obtain

v − e
(
k

2
−
√
k

)
≤ v − v

dk/2e

(
k

2
−
√
k

)
= v

(
1− 2

k + 1

(
k

2
−
√
k

))
≤
(

2`k − k − 1

2

)(
1− k

k + 1
+

2
√
k

k + 1

)
. (8)

Thus to prove (7), we require that (8) is less than 4`
√
k. Solving for `, we obtain(

2`k − k − 1

2

)(
1− k

k + 1
+

2
√
k

k + 1

)
< 4`
√
k ⇔ ` <

2k3/2 + k − 2
√
k − 1

4k − 8
√
k

. (9)

Therefore, to complete the proof we need to check that the definition of ` from from (1)
makes this inequality true for all k ≥ 5.

Since 8k
√
k < 4k2 and 8

√
k < 26k for k ≥ 5,

8k
√
k + 8

√
k < 4k2 + 26k + 2.

This implies that

4k2 + 8k
√
k − 36k + 8

√
k < 8k2 − 10k + 2
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which implies that

(k + 4
√
k − 1)(4k − 8

√
k) < (2k3/2 + k − 2

√
k − 1)(4

√
k − 2)

k + 1

4
√
k − 2

+ 1 <
2k3/2 + k − 2

√
k − 1

4k − 8
√
k

.

Since ` =
⌈

k+1
4
√
k−2

⌉
, (9) holds.

Case 2: v ≤ 2` dk/2e+bk/2c. In this case, Lemma 2 implies that e ≥ v/ dk/2e−1. Plugging
these two bounds into (7), we obtain

v − e
(
k

2
−
√
k

)
≤ v −

(
v

dk/2e
− 1

)(
k

2
−
√
k

)
≤
(

2`

⌈
k

2

⌉
+

⌊
k

2

⌋)(
1− 1

dk/2e

(
k

2
−
√
k

))
+
k

2
−
√
k. (10)

Since 1− 1/dk/2e(k/2−
√
k) = 2

√
k+1

k+1
, (10) continues as(

`(k + 1) +
k − 1

2

)(
2
√
k + 1

k + 1

)
+
k

2
−
√
k < 2`

√
k + `+

√
k +

1

2
+
k

2
−
√
k

= 2`
√
k + `+

k

2
+

1

2
.

Therefore, to prove (7) we must prove that

2`
√
k + `+

k

2
+

1

2
≤ 4`
√
k ⇔ ` ≥ k + 1

4
√
k − 2

,

which is true by the definition of `.

Proof of Theorem 1. We need to prove that for all η > 0 and for p defined as in (3), with
probability going to one as n goes to infinity, a graph G drawn from the distribution G(k)(n, p)
has the following property: the number of labeled circuits of type π and length 4` in G is

at most (1 + η)(k!)4`|E(G)|4`n−2k`. With high probability, |E(G)| = (1± η
16`

)pn
k

k!
. Therefore,

we need to prove that with high probability the number of labeled circuits in G is at most
(1 + η

2
)p4`n2k`.

We prove this in two stages. First, we prove that with high probability the number
of labeled, degenerate cycles is upper bounded by η

4
p4`n2k`. This is just the first moment

method as follows. Let Y be the number of labeled, degenerate cycles in G. By Markov’s
Inequality,

P
[
Y >

ηp4`n2k`

4

]
<

4E[Y ]

ηp4`n2k`
.
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Lemmas 3 and 4 prove that the right hand side goes to zero as n goes to infinity, so with
high probability the number of labeled, degenerate cycles in G is at most η

4
p4`n2k`.

We now use the second moment method to prove that with high probability, the number
of labeled (non-degenerate) cycles is concentrated around its expectation. First by the
definition of p, the expected number of cycles goes to infinity. For each list W of 2k` distinct
vertices of G, define an event AW as “W forms a labeled Cπ,4` in G”. Using the techniques
in [1, Section 4.3], the second moment method then comes down to showing that for a list
W ,

∆∗ =
∑
W ′∼W

P[AW ′|AW ] = o(p4`n2k`),

where W ′ ∼ W means that the events AW and AW ′ are dependent.
Assume that Ŵ and Ŵ ′ are cycles in K

(k)
n which share at least one edge and let W and

W ′ be the lists of vertices of Ŵ and Ŵ ′ respectively. Then we have that AW and AW ′ are
dependent. Let v be the number of vertices of Ŵ ′ which do not appear in V (Ŵ ). Since the
cycle is two regular, there must be at least 2v

k
edges of Ŵ ′ which are not in E(Ŵ ). Thus

P[AW ′|AW ] ≤ p2v/k.

There are at most nv choices for v vertices outside V (Ŵ ), so

∆∗ ≤
2k`−k∑
v=1

p2v/knv. (11)

The algebra in Case 1 of Lemmas 3 and 4 computed that if e and v are integers such
that e ≥ v/ dk/2e and v ≤ 2k` − bk/2c, then penv = o(p4`n2k`). Since W and W ′ must
share at least k vertices, v ≤ 2k` − k ≤ 2k` − bk/2c, so if we let e = 2v/k ≥ v/ dk/2e,
then the computations in Case 1 of Lemmas 3 and 4 imply that p2v/knv = o(p4`n2k`) for all
1 ≤ v ≤ 2k` − k. Since there are constantly many terms in the sum (11), ∆∗ = o(p4`n2k`)
which implies that with probability going to one as n goes to infinity, the number of cycles
is at most (1 + η

4
)p4`n2k`. Combined with the fact that with high probability the number

of degenerate cycles is at most η
4
p4`n2k`, the number of labeled circuits in G is at most

(1 + η
2
)p4`n2k` with high probability, completing the proof.
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