
MCS 360 Exam 2 11 November 2015

Name:

• Do not start until instructed to do so.

• In order to get full credit, you need to show your work.

• You have 50 minutes to complete the exam.

• Good Luck!

Problem 1.a /15
Problem 1.b /15
Problem 1.c /20
Problem 2.a /20
Problem 2.b /15
Problem 2.c /15

Total /100

Problem 1 (15 points) Here is an attempt to construct a circular singly linked list of integers
without a dummy node that is also properly deallocated.

struct In tL inkedL i s t {

struct Node {
int va l ;
enum {INTERNAL NODE, LAST NODE} tag ;
union {

shared ptr<Node> i n t e rna lNext ;
weak ptr<Node> f romLastToFirst ;

}
Node(shared ptr<Node> next) : tag (INTERNAL NODE) , in t e rna lNext (next) {} ;
Node () : tag (LAST NODE) , fromLastToFirst (NULL) {} ;
˜Node () {

i f (tag == INTERNAL NODE)
inte rna lNext . ˜ sha r ed pt r () ;

else
f romLastToFirst . ˜ weak ptr () ;

}
} ;

shared ptr<Node> f i r s t ;
weak ptr<Node> l a s t ;

void a d d t o f r o n t (int v) {
i f (f i r s t) {

f i r s t = make shared<Node>(f i r s t) ;
f i r s t −>va l = v ;
l a s t−>f romLastToFirst = f i r s t ;

} else {
f i r s t = make shared<Node>() ;
l a s t = f i r s t ;
f i r s t −>va l = v ;
l a s t−>f romLastToFirst = f i r s t ;

}
}

} ;

(1.a) (15 points) Consider the following code:

l s t = IntL inkedL i s t () ;
l s t . a d d t o f r o n t (2) ;
l s t . a d d t o f r o n t (7) ;
l s t . a d d t o f r o n t (6) ;

Draw a picture of the call-stack and heap after executing this code. The call stack should
have a single entry for the variable lst and the heap should show the memory for the three
nodes. Draw the contents of memory and use an arrow for pointers. Label each pointer to
show if it is shared or weak.

call stack

lst.first

lst.last

6

IN
T

N
O

D
E

7

IN
T

N
O

D
E

2

L
A

S
T

N
O

D
E

shared

weak

shared shared

weak

(1.b) (15 points) Will IntLinkedList have all the memory used by Nodes correctly deal-
located? If yes, describe why memory is correctly deallocated. If no, describe the problem
and how you could fix it. Be sure to mention the use of shared versus weak pointers. Your
answer should be 4-5 sentences.

Answer. Yes, memory is properly deallocated. Shared pointers work by maintaining a refer-
ence count and will deallocate memory when the count reaches zero. Weak pointers do not
contribute to the reference count so do not prevent a count from reaching zero. The reason
that shared pointers would not properly deallocate memory is if there existed a pointer cycle.
Examining the IntLinkedList definition, shared pointers do not create a cycle since the last
node in the list does not use a shared pointer but a weak pointer.

(1.c) (20 points) Write a method count positive for the IntLinkedList struct that takes
no inputs and returns the number of positive entries in the list. Be sure to use a switch on
the tag in each node.

Answer. There are several possible solutions, but here is mine:

int c o u n t p o s i t i v e () {
shared ptr<Node> n = f i r s t ;
int cnt = 0 ;
while (true) {

i f (n−>va l > 0)
cnt += 1

switch (n−>tag) {
case Node : : INTERNAL NODE:

n = n−>i n t e rna lNext ;
break ;

case Node : : LAST NODE:
return cnt ;

}
return cnt ;

}

Problem 2 Consider the following Treap definition.

template <typename Tkey , typename Tval>
struct Treap {

struct Node {
Tkey key ;
Tval va l ;
int p ;
shared ptr<Node> l e f t ;
shared ptr<Node> r i g h t ;

} ;

shared ptr<Node> root ;
} ;

(2.a) (20 points) Write a method are priorities valid for the Treap struct which takes
no parameters and returns true if the p properties satisfy the heap property of the treap and
false otherwise. Your method should be recursive.

Answer. The heap property is that v.p is larger than both v.left.p and v.right.p. So we
will visit each node checking this property, recursing to both the right and left. The return
values from the right and left then are combined to produce my return value. We also need
a helper function.

bool a r e p r i o r i t i e s v a l i d () {
return v a l i d h e l p e r (root) ;

}
bool v a l i d h e l p e r (shared ptr<Node> v) {

i f (! v) {
return true ;

}
bool l e f tOk = true ;
bool rightOk = true ;
i f (v−> l e f t) {

i f (v−>p > v−>l e f t−>p)
return fa l se ;

l e f tOk = v a l i d h e l p e r (v−> l e f t) ;
}
i f (v−>r i g h t) {

i f (v−>p > v−>r i ght−>p)
return fa l se ;

r ightOk = v a l i d h e l p e r (v−>r i g h t) ;
}
return l e f tOk && rightOk ;

}

(2.b) (15 points) Give the running time of your are priorities valid method in big-O
notation. Is it possible to improve the running time?

Answer. The running time is O(n), since each recursive instance is time O(1) and we visit
each node exactly once. It is impossible to improve the running time since we need to visit
each node to check the heap property, and there are n nodes.

(2.c) (15 points) In a treap, if we call add(x) and then immediately call remove(x) with the
same value x, do we always end up with the original treap? Argue why or why not.

Answer. Yes, the same tree will be produced. A structure of a treap is always as if we had
formed a binary search tree by adding the elements in order of their priorities. The rotations
we do during insert and remove are just fixuup we do in order to make the treap look as if
it was formed by adding elements in order of priority. Thus if we add and then remove an
element x, none of the other elements changed priority so we will get back the same treap.
Thus any rotations that happen during the insert of x are exactly undone by the remove.

