Uniquely C_4 -Saturated Graphs^{*}

Joshua Cooper[†], John Lenz[‡], Timothy D. LeSaulnier[‡], Paul S. Wenger[‡], Douglas B. West^{‡§}

January 26, 2010

Abstract

For a fixed graph H, a graph G is uniquely H-saturated if G does not contain H, but the addition of any edge from \overline{G} to G completes exactly one copy of H. Using a combination of algebraic methods and counting arguments, we determine all the uniquely C_4 -saturated graphs; there are only ten of them.

1 Introduction

For a fixed graph H, a graph G is H-saturated if G does not contain H but joining any nonadjacent vertices produces a graph that does contain H. Let P_n , C_n , K_n denote the path, cycle, and complete graph with n vertices, respectively. The study of H-saturated graphs began when Turán [5] determined the n-vertex K_r -saturated graphs with the most edges. In the opposite direction, Erdős, Hajnal, and Moon [1] determined the n-vertex K_r saturated graphs with the fewest edges. A survey of results and problems about the smallest n-vertex H-saturated graphs appears in [4].

A graph G is uniquely H-saturated if G is H-saturated and the addition of any edge joining nonadjacent vertices completes exactly one copy of H. The graphs found in [1] are uniquely K_r -saturated. For example, consider $H = C_3$. Every C_3 -saturated graph has diameter at most 2. All trees with diameter 2 are stars and are uniquely C_3 -saturated. A uniquely C_3 saturated graph G cannot contain a 3-cycle or a 4-cycle, so such a graph that is not a tree

^{*}Research of all authors partially supported by NSF grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students."

[†]Mathematics Dept., Univ. of South Carolina, Columbia, SC; cooper@math.sc.edu.

[‡]Mathematics Dept., Univ. of Illinois, Urbana, IL; email addresses jlenz2@illinois.edu, tlesaul2@illinois.edu, pwenger2@illinois.edu, west@math.uiuc.edu.

[§]Research supported by NSA grant H98230-09-1-0363.

has girth 5. Every graph with girth 5 and diameter 2 is uniquely C_3 -saturated. The graphs with diameter d and girth 2d + 1 are the *Moore graphs*. Hoffman and Singleton [2] proved that besides odd cycles there are only finitely many Moore graphs, all having diameter 2. Thus, except for stars, there are finitely many uniquely C_3 -saturated graphs.

Ollmann [3] determined the C_4 -saturated *n*-vertex graphs with the fewest edges, but few of these are uniquely C_4 -saturated. An exception is the triangle K_3 ; whenever n < |V(H)|, vacuously K_n is uniquely *H*-saturated. In this paper we determine all the uniquely C_4 saturated graphs.

Theorem 1. There are precisely ten uniquely C_4 -saturated graphs.

In the list, the only example with girth 5 is the 5-cycle. The others are small trees or contain triangles; all have at most nine vertices.

The sense in which uniquely C_k -saturated graphs can be viewed as generalizing the Moore graphs of diameter 2 is reflected in our proof. The structure and techniques of the paper are very similar to the eigenvalue approach used to prove both the Hoffman-Singleton result on Moore graphs and the "Friendship Theorem", which states that a graph in which any two distinct vertices have exactly one common neighbor has a vertex adjacent to all others (see Wilf [7]). Structural arguments are used to show that under certain conditions the graphs in question are regular. Counting of walks then yields a polynomial equation involving the adjacency matrix, after which eigenvalue arguments exclude all but a few graphs.

The graphs that result from the Friendship Theorem consist of some number of triangles sharing a single vertex; such graphs are uniquely C_5 -saturated. Thus, unlike for C_4 , there are infinitely many uniquely C_5 -saturated graphs. Wenger [6] has shown that except for small complete graphs, the "friendship graphs" are the only uniquely C_5 -saturated graphs.

2 Structural Properties

Our graphs have no loops or multi-edges. A k-cycle is a cycle with k vertices, and we define a k-path to be a k-vertex path. A path with endpoints x and y is an x, y-path. For a vertex v in a graph G, the neighborhood N(v) is $\{u \in V(G): uv \in E(G)\}$. The kth neighborhood $N^k(v)$ is $\{u \in V(G): d(u, v) = k\}$, where the distance d(u, v) is the minimum length of a u, v-path. The diameter of a graph is the maximum distance between vertices. The degree d(v) of a vertex v in a graph G is the number of incident edges.

We begin with basic observations about the structure of uniquely C_4 -saturated graphs.

Lemma 2. The following properties hold for every uniquely C_4 -saturated graph G.

- (a) G is connected and has diameter at most 3.
- (b) Any two nonadjacent vertices in G are the endpoints of exactly one 4-path.
- (c) G contains no 6-cycle and no two triangles sharing a vertex.

Proof. If x and y are nonadjacent vertices in G, then the edge xy completes a 4-cycle. Thus G contains an x, y-path of length 3. Since G is uniquely C_4 -saturated, x and y are the endpoints of exactly one 4-path. Opposite vertices on a 6-cycle would be the endpoints of two 4-paths if nonadjacent and would lie on a 4-cycle if adjacent. The same is true for nonadjacent vertices in the union of two triangles sharing one vertex. The union of two triangles sharing two vertices contains a 4-cycle.

Lemma 3. If G is uniquely C_4 -saturated and $|V(G)| \ge 3$, then G has girth 3 or 5.

Proof. If G contains a triangle, then G has girth 3, so we may assume that G is triangle-free. Hence there are vertices x and y with d(x, y) = 2; let z be their unique common neighbor. By Lemma 2, there is a 4-path joining x and y. If it contains z, then G contains a triangle. Otherwise, x and y lie on a 5-cycle. Since G is C_4 -free, it follows that G has girth 5.

If G has maximum degree at most 1, then G is K_1 or K_2 , and these are uniquely C_4 saturated. We may assume henceforth maximum degree at least 2. Lemma 3 then allows us
to break the study of uniquely C_4 -saturated graphs into two cases: girth 3 and girth 5.

3 Girth 5

Lemma 4. If G is a uniquely C_4 -saturated graph with girth 5, then G is regular.

Proof. Let u and v be adjacent vertices, with $d(u) \leq d(v)$. Since G is triangle-free, N(v) is an independent set, and hence the 4-paths joining neighbors of v do not contain v. If d(u) < d(v), then by the pigeonhole principle two of the unique 4-paths from u to the other d(v) - 1 neighbors of v begin along the same edge uu' incident to u. Each of these two paths continues along an edge to v to form distinct 4-paths from u' to v. Since N(v) is independent, u' is not adjacent to v, so this contradicts Lemma 2.

We conclude that adjacent vertices in G have the same degree. Since G is connected, it follows that G is k-regular.

We now show that exactly one uniquely C_4 -saturated graph has girth 5.

Theorem 5. The only uniquely C_4 -saturated graph with girth 5 is C_5 .

Proof. Let G be a uniquely C_4 -saturated n-vertex graph with girth 5. By Lemma 4, G is regular; let k be the vertex degree. Let A be the adjacency matrix of G, let J be the n-by-n matrix with every entry 1, and let 1 be the n-vector with each coordinate 1. If x and y are nonadjacent vertices of G, then by Lemma 2 there is one x, y-path of length 3 and no other walk of length 3 joining x and y. If x and y are adjacent, then there are 2k - 1 walks of length 3 joining them. If x = y, then no walk of length 3 joins x and y, because G is triangle-free. This yields $A^3 = (J - A - I) + (2k - 1)A$, or $J = A^3 - (2k - 2)A + I$.

Because J is a polynomial in A, every eigenvector of A is also an eigenvector of J. Since G is k-regular, **1** is an eigenvector of A with eigenvalue k. Also **1** is an eigenvector of J with eigenvalue n. This yields the following count of the vertices of G:

$$n = k^{3} - (2k - 2)k + 1 = k^{3} - 2k^{2} + 2k + 1.$$

We have observed that every eigenvector of A is also an eigenvector of J. Since J has rank 1, we conclude that Jx = 0x when x is an eigenvector of A other than 1. If λ is the corresponding eigenvalue of A, then $J = A^3 - (2k - 2)A + I$ yields

$$0 = \lambda^3 - (2k - 2)\lambda + 1.$$
 (1)

It follows that A has at most three eigenvalues other than k.

Let q denote the polynomial in (1). Being a cubic polynomial, it factors as

$$q(\lambda) = \lambda^{3} - (2k - 2)\lambda + 1 = (\lambda - r_{1})(\lambda - r_{2})(\lambda - r_{3}).$$
(2)

It follows that

$$r_1 + r_2 + r_3 = 0. (3)$$

Suppose first that two of these roots have a common value, r. From (3), the third is -2r, and we have

$$\lambda^{3} - (2k - 2)\lambda + 1 = (\lambda - r)^{2}(\lambda + 2r) = \lambda^{3} - 3r^{2}\lambda + 2r^{3}.$$

By equating coefficients, r equals both $(1/2)^{1/3}$ (irrational) and (2k-2)/3 (rational). Hence q has three distinct roots.

Suppose next that q has a rational root. The Rational Root Theorem implies that 1 and -1 are the only possible rational roots of q. If -1 is a root, then k = 1 and G does not have girth 5. If 1 is a root, then k = 2 and $G = C_5$.

Hence we may assume that q has three distinct irrational roots. In this case we will obtain a contradiction. Index the eigenvalues so that the multiplicities a, b, and c of r_1 , r_2 , and r_3 (respectively) satisfy $a \leq b \leq c$. Letting p_A be the characteristic polynomial of A,

$$p_A(\lambda) = (\lambda - k)(\lambda - r_1)^a (\lambda - r_2)^b (\lambda - r_3)^c.$$
(4)

Combining (2) and (4) yields

$$p_A(\lambda) = (\lambda - k)(\lambda^3 - (2k - 2)\lambda + 1)^a(\lambda - r_2)^{b-a}(\lambda - r_3)^{c-a}$$

Because A has integer entries, $p_A(\lambda) \in \mathbb{Q}[\lambda]$. By applying the division algorithm, p = rsand $p, r \in \mathbb{Q}[\lambda]$ imply $s \in \mathbb{Q}[\lambda]$. Hence $(\lambda - r_2)^{b-a}(\lambda - r_3)^{c-a} \in \mathbb{Q}[\lambda]$. Since $q(\lambda)$ is a monic cubic polynomial in $\mathbb{Q}[\lambda]$ with three irrational roots, it is irreducible and is the minimal polynomial of r_1 , r_2 , and r_3 over \mathbb{Q} . Thus q divides $(\lambda - r_2)^{b-a}(\lambda - r_3)^{c-a}$ if c > a. In that case, since r_1 is a root of q, it is also a root of $(\lambda - r_2)^{b-a}(\lambda - r_3)^{c-a}$. We conclude that c = a, and all three eigenvalues have the same multiplicity.

The trace of A is 0, so

$$k + ar_1 + ar_2 + ar_3 = k + a(r_1 + r_2 + r_3) = \operatorname{Tr}(A) = 0.$$
 (5)

Together, (3) and (5) require k = 0. Thus q cannot have three distinct irrational roots when G has girth 5.

4 Girth 3

We now consider uniquely C_4 -saturated graphs with a triangle. The next lemma gives a structural decomposition. For a set $S \subseteq V(G)$, let $d(x, S) = \min\{d(x, v) \colon v \in S\}$, let $N(S) = \{v \in V(G) \colon d(v, S) = 1\}$, and let $N^k(S) = \{v \in V(G) \colon d(v, S) = k\}$.

Lemma 6. Let S be the vertex set of a triangle in a graph G, with $S = \{v_1, v_2, v_3\}$. For $i \in \{1, 2, 3\}$, let $V_i = N(v_i) - S$, and let $V'_i = N^2(v_i) - N(S)$. Let $R = N^3(S)$. If G is uniquely C_4 -saturated, then G has the following structure:

- (a) $V_i \cap V_j = \emptyset$ when $i \neq j$;
- (b) each vertex in V'_i has exactly one neighbor in V_i ;
- (c) $V'_i \cap V'_j = \emptyset$ when $i \neq j$;
- (d) no edges join V'_i and V'_j when $i \neq j$;
- (e) N(S) is independent;
- (f) each V'_i induces a matching;
- (g) each vertex in R has exactly one neighbor in each V'_i .

Figure 1: Structure of uniquely C_4 -saturated graph with a triangle.

Proof. Since G has diameter 3, we have described all of V(G). Figure 1 makes it easy to see most of the conclusions. The prohibition of 4-cycles and of triangles with common vertices implies (a), (b), and (e). The prohibition of 6-cycles implies (c) and (d).

Given these results, (f) is implied by the existence of a unique 4-path joining v_i to each vertex of V'_i . For (g), each vertex in R is joined by a unique 4-path to each vertex in S; it can only reach v_i quickly enough by moving first to a vertex of V'_i , and uniqueness of the 4-path prohibits more than one such neighbor.

The main part of the argument is analogous to the regularity, walk-counting, and eigenvalue arguments in Lemma 4 and Theorem 5.

Theorem 7. If G is a C₄-saturated graph with a triangle, then $R = \emptyset$ in the partition of V(G) given in Lemma 6.

Proof. If $R \neq \emptyset$, then each set V_i and V'_i in the partition is nonempty. We show first that G is regular, then show that each vertex lies in one triangle, and finally count 4-paths to determine the cube of the adjacency matrix and obtain a contradiction using eigenvalues.

Consider V'_i and V_j with $i \neq j$. A vertex x in V'_i reaches each vertex of V_j by a unique 4-path, passing through R and V'_j . By Lemma 6(g), each vertex of R has one neighbor in V'_j , so each edge from x to R starts exactly one 4-path to V_j . By Lemma 6, the other neighbors of x are one each in V_i and V'_i , so $d(x) = |V_j| + 2$. Since the choice of i and j was arbitrary, we conclude that each vertex of $N^2(S) \cup S$ has degree a + 2, where $a = |V_1| = |V_2| = |V_3|$.

For $x \in V_i$ and $y \in V_j$ with $j \neq i$, the unique 4-path joining x to any neighbor of y in V'_j must pass through V'_i and R. By Lemma 6(g), these paths use distinct vertices in R; since G has no 6-cycle through y, they also use distinct vertices in V'_i . Hence $d(x) \ge d(y)$. By symmetry, all vertices of N(S) have the same degree; let this degree be b + 1.

Consider $r \in R$. By Lemma 6(g), 4-paths from r to V_i may visit another vertex in R and then reach V_i in exactly one way, or they may go directly to V'_i , traverse an edge within V'_i , and continue to V_i . The total number of such paths is [d(r) - 3] + 1, and this must equal $|V_i|$. Hence d(r) = a + 2. Since $|V_i| = a$ and d(x) = b + 1 for $x \in V_i$, Lemma 6 yields $|V'_i| = ab$.

Consider $x \in V'_i$ and $j \neq i$. Each 4-path from x to V'_j starts with an edge in V'_i , ends with an edge in V'_j , or uses two vertices in R. Since each vertex in $N^2(S)$ has a neighbors in R, there are a paths of each of the first two types. Since each vertex of R has degree a + 2, with three neighbors in $N^2(S)$, there are a(a-1) paths of the third type. Since these paths reach distinct vertices of V'_j , and every vertex of V'_j is reached, $|V'_j| = a(a+1)$.

Hence a(a + 1) = ab, and b = a + 1. Since every vertex of G has degree a + 2 or b + 1, we conclude that G is k-regular, where k = a + 2.

We show next that every vertex of G lies in a triangle. If v lies in no triangle, then N(v) is independent, and having unique 4-paths from $N^2(v)$ to v forces $N^2(v)$ to induce a 1-regular subgraph. Since $|N^2(v)| = k(k-1)$, there are $\binom{k}{2}$ edges induced by $N^2(v)$. Each 4-path with both endpoints in N(v) has internal vertices in $N^2(v)$. Since there are $\binom{k}{2}$ such pairs of endpoints and each edge within $N^2(v)$ extends to exactly one such path, no edge within $N^2(v)$ lies in a triangle with a vertex of N(v). Thus each neighbor of v also lies in no triangle.

We conclude that neighboring vertices both do or both do not lie in triangles. By induction on the distance from S, every vertex lies in a triangle. By Lemma 2, each vertex lies in exactly one triangle.

With A being the adjacency matrix of G, the matrix A^3 again counts walks of length 3. Since each vertex is on one triangle, each diagonal entry is 2. Since G is k-regular, entries for adjacent vertices are 2k - 1, and by unique C_4 -saturation the remaining entries equal 1. Hence $A^3 = J + (2k - 2)A + I$, and again J is expressible as a polynomial in A:

$$J = A^3 - (2k - 2)A - I.$$

Again 1 is an eigenvector of A with eigenvalue k and of J with eigenvalue n. All other eigenvalues of A satisfy $p(\lambda) = 0$, where

$$p(\lambda) = \lambda^3 - (2k - 2)\lambda - 1.$$

Arguing as in the proof of Theorem 5, $p(\lambda)$ cannot be irreducible over \mathbb{Q} . If λ is rational, then $\lambda = \pm 1$, and $k \in \{1, 2\}$. However, $R \neq \emptyset$ requires $k \geq 3$.

Having shown that $R = \emptyset$, we now consider instances with $N^2(S) \neq \emptyset$.

Lemma 8. Let G be a uniquely C_4 -saturated graph with a triangle having vertex set S. If $N^2(S) \neq \emptyset$, then G is one of the three graphs in Figure 2.

Figure 2: Examples having a vertex at distance 2 from a triangle.

Proof. Let $S = \{v_1, v_2, v_3\}$. In the partition defined in Lemma 6, a 4-path joining V'_i and V'_j must pass through R. Since $R = \emptyset$, we conclude that only one of $\{V'_1, V'_2, V'_3\}$ is nonempty; by symmetry, let it be V'_1 . Since G has diameter 3, we have $V_2 = V_3 = \emptyset$.

By Lemma 6(f), V'_1 induces a matching. By Lemma 6(b), every vertex of V'_1 thus has degree 2. Consider $w \in V_1$ with neighbors u and v in V'_1 . If u and v are not adjacent, then a 4-path joining them must use w and the neighbor in V'_1 of one of them. Thus if w has three pairwise nonadjacent neighbors in V'_1 , then at least two of them have neighbors in V'_1 that are also neighbors of w. This yields two triangles containing w, contradicting Lemma 2. We conclude that w cannot have more than three neighbors in V'_1 .

If $w \in V_1$ has three neighbors in V'_1 , then two of them (say x and y) are adjacent. The only 4-paths that can leave x or y for other vertices of V'_1 end at the remaining neighbor of w or its mate in V'_1 . Hence $G = F_2$.

If $w \in V_1$ has two neighbors in V'_1 , then they are adjacent, and no 4-paths can join them to other vertices of V'_1 . Hence $G = F_3$.

In the remaining case, every vertex of V_1 has at most one neighbor in V'_1 . Since any two vertices of V_1 are joined by a 4-path through an edge within V'_1 , there can only be two vertices in V_1 , and $G = F_1$.

One case remains.

Lemma 9. If G is a uniquely C_4 -saturated graph having a triangle S adjacent to all vertices, then G consists of S and a matching joining S to the remaining (at most three) vertices.

Proof. We have assumed $N^2(S) = \emptyset$. Since 4-paths joining vertices in V_i must pass through V'_i , each V_i has size 0 or 1. Since $V_i \cap V_j = \emptyset$ (Lemma 6(a)), G is as described.

We can now prove Theorem 1.

Theorem 1. There are exactly ten uniquely C_4 -saturated graphs.

Proof. Trivially, K_1 , K_2 , and K_3 are uniquely C_4 -saturated. With girth 5, there is only C_5 , by Theorem 5. With girth 3, Lemma 8 provides three graphs when some vertex has distance 2 from a triangle, and Lemma 9 provides three when there is no such vertex.

References

- P. Erdős, A. Hajnal, and J. W. Moon, A problem in graph theory. *Amer. Math. Monthly* 71 (1964), 1107–1110.
- [2] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3. IBM J. Res. Develop. 4 (1960), 497–504.
- [3] L. T. Ollmann, K_{2,2}-saturated graphs with a minimal number of edges. Proc. Third SE Conf. on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), 367–392.
- [4] O. Pikhurko, Results and open problems on minimum saturated hypergraphs. Ars Combin. 72 (2004), 111–127.
- [5] P. Turán, Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 (1941), 436–452.
- [6] P. S. Wenger, Uniquely C_k -saturated graphs. In preparation.
- [7] H. S. Wilf, The friendship theorem. In *Combinatorial Mathematics and its Applications* (*Proc. Conf., Oxford, 1969*) (Academic Press, 1971), 307–309.