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Abstract

For a fixed graph H, a graph G is uniquely H-saturated if G does not contain H,

but the addition of any edge from G to G completes exactly one copy of H. Using

a combination of algebraic methods and counting arguments, we determine all the

uniquely C4-saturated graphs; there are only ten of them.

1 Introduction

For a fixed graph H, a graph G is H-saturated if G does not contain H but joining any

nonadjacent vertices produces a graph that does contain H. Let Pn, Cn, Kn denote the

path, cycle, and complete graph with n vertices, respectively. The study of H-saturated

graphs began when Turán [5] determined the n-vertex Kr-saturated graphs with the most

edges. In the opposite direction, Erdős, Hajnal, and Moon [1] determined the n-vertex Kr-

saturated graphs with the fewest edges. A survey of results and problems about the smallest

n-vertex H-saturated graphs appears in [4].

A graph G is uniquely H-saturated if G is H-saturated and the addition of any edge joining

nonadjacent vertices completes exactly one copy of H. The graphs found in [1] are uniquely

Kr-saturated. For example, consider H = C3. Every C3-saturated graph has diameter at

most 2. All trees with diameter 2 are stars and are uniquely C3-saturated. A uniquely C3-

saturated graph G cannot contain a 3-cycle or a 4-cycle, so such a graph that is not a tree
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has girth 5. Every graph with girth 5 and diameter 2 is uniquely C3-saturated. The graphs

with diameter d and girth 2d + 1 are the Moore graphs. Hoffman and Singleton [2] proved

that besides odd cycles there are only finitely many Moore graphs, all having diameter 2.

Thus, except for stars, there are finitely many uniquely C3-saturated graphs.

Ollmann [3] determined the C4-saturated n-vertex graphs with the fewest edges, but few

of these are uniquely C4-saturated. An exception is the triangle K3; whenever n < |V (H)|,

vacuously Kn is uniquely H-saturated. In this paper we determine all the uniquely C4-

saturated graphs.

Theorem 1. There are precisely ten uniquely C4-saturated graphs.

In the list, the only example with girth 5 is the 5-cycle. The others are small trees or

contain triangles; all have at most nine vertices.

The sense in which uniquely Ck-saturated graphs can be viewed as generalizing the Moore

graphs of diameter 2 is reflected in our proof. The structure and techniques of the paper are

very similar to the eigenvalue approach used to prove both the Hoffman-Singleton result on

Moore graphs and the “Friendship Theorem”, which states that a graph in which any two

distinct vertices have exactly one common neighbor has a vertex adjacent to all others (see

Wilf [7]). Structural arguments are used to show that under certain conditions the graphs

in question are regular. Counting of walks then yields a polynomial equation involving the

adjacency matrix, after which eigenvalue arguments exclude all but a few graphs.

The graphs that result from the Friendship Theorem consist of some number of triangles

sharing a single vertex; such graphs are uniquely C5-saturated. Thus, unlike for C4, there are

infinitely many uniquely C5-saturated graphs. Wenger [6] has shown that except for small

complete graphs, the “friendship graphs” are the only uniquely C5-saturated graphs.

2 Structural Properties

Our graphs have no loops or multi-edges. A k-cycle is a cycle with k vertices, and we define

a k-path to be a k-vertex path. A path with endpoints x and y is an x, y-path. For a vertex

v in a graph G, the neighborhood N(v) is {u ∈ V (G) : uv ∈ E(G)}. The kth neighborhood

Nk(v) is {u ∈ V (G) : d(u, v) = k}, where the distance d(u, v) is the minimum length of a

u, v-path. The diameter of a graph is the maximum distance between vertices. The degree

d(v) of a vertex v in a graph G is the number of incident edges.

We begin with basic observations about the structure of uniquely C4-saturated graphs.
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Lemma 2. The following properties hold for every uniquely C4-saturated graph G.

(a) G is connected and has diameter at most 3.

(b) Any two nonadjacent vertices in G are the endpoints of exactly one 4-path.

(c) G contains no 6-cycle and no two triangles sharing a vertex.

Proof. If x and y are nonadjacent vertices in G, then the edge xy completes a 4-cycle. Thus

G contains an x, y-path of length 3. Since G is uniquely C4-saturated, x and y are the

endpoints of exactly one 4-path. Opposite vertices on a 6-cycle would be the endpoints of

two 4-paths if nonadjacent and would lie on a 4-cycle if adjacent. The same is true for

nonadjacent vertices in the union of two triangles sharing one vertex. The union of two

triangles sharing two vertices contains a 4-cycle.

Lemma 3. If G is uniquely C4-saturated and |V (G)| ≥ 3, then G has girth 3 or 5.

Proof. If G contains a triangle, then G has girth 3, so we may assume that G is triangle-free.

Hence there are vertices x and y with d(x, y) = 2; let z be their unique common neighbor.

By Lemma 2, there is a 4-path joining x and y. If it contains z, then G contains a triangle.

Otherwise, x and y lie on a 5-cycle. Since G is C4-free, it follows that G has girth 5.

If G has maximum degree at most 1, then G is K1 or K2, and these are uniquely C4-

saturated. We may assume henceforth maximum degree at least 2. Lemma 3 then allows us

to break the study of uniquely C4-saturated graphs into two cases: girth 3 and girth 5.

3 Girth 5

Lemma 4. If G is a uniquely C4-saturated graph with girth 5, then G is regular.

Proof. Let u and v be adjacent vertices, with d(u) ≤ d(v). Since G is triangle-free, N(v)

is an independent set, and hence the 4-paths joining neighbors of v do not contain v. If

d(u) < d(v), then by the pigeonhole principle two of the unique 4-paths from u to the other

d(v) − 1 neighbors of v begin along the same edge uu′ incident to u. Each of these two

paths continues along an edge to v to form distinct 4-paths from u′ to v. Since N(v) is

independent, u′ is not adjacent to v, so this contradicts Lemma 2.

We conclude that adjacent vertices in G have the same degree. Since G is connected, it

follows that G is k-regular.

We now show that exactly one uniquely C4-saturated graph has girth 5.
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Theorem 5. The only uniquely C4-saturated graph with girth 5 is C5.

Proof. Let G be a uniquely C4-saturated n-vertex graph with girth 5. By Lemma 4, G is

regular; let k be the vertex degree. Let A be the adjacency matrix of G, let J be the n-by-n

matrix with every entry 1, and let 1 be the n-vector with each coordinate 1. If x and y

are nonadjacent vertices of G, then by Lemma 2 there is one x, y-path of length 3 and no

other walk of length 3 joining x and y. If x and y are adjacent, then there are 2k − 1 walks

of length 3 joining them. If x = y, then no walk of length 3 joins x and y, because G is

triangle-free. This yields A3 = (J − A − I) + (2k − 1)A, or J = A3 − (2k − 2)A + I.

Because J is a polynomial in A, every eigenvector of A is also an eigenvector of J . Since

G is k-regular, 1 is an eigenvector of A with eigenvalue k. Also 1 is an eigenvector of J with

eigenvalue n. This yields the following count of the vertices of G:

n = k3 − (2k − 2)k + 1 = k3 − 2k2 + 2k + 1.

We have observed that every eigenvector of A is also an eigenvector of J . Since J has

rank 1, we conclude that Jx = 0x when x is an eigenvector of A other than 1. If λ is the

corresponding eigenvalue of A, then J = A3 − (2k − 2)A + I yields

0 = λ3 − (2k − 2)λ + 1. (1)

It follows that A has at most three eigenvalues other than k.

Let q denote the polynomial in (1). Being a cubic polynomial, it factors as

q(λ) = λ3 − (2k − 2)λ + 1 = (λ − r1)(λ − r2)(λ − r3). (2)

It follows that

r1 + r2 + r3 = 0. (3)

Suppose first that two of these roots have a common value, r. From (3), the third is −2r,

and we have

λ3 − (2k − 2)λ + 1 = (λ − r)2(λ + 2r) = λ3 − 3r2λ + 2r3.

By equating coefficients, r equals both (1/2)1/3 (irrational) and (2k− 2)/3 (rational). Hence

q has three distinct roots.

Suppose next that q has a rational root. The Rational Root Theorem implies that 1 and

−1 are the only possible rational roots of q. If −1 is a root, then k = 1 and G does not have

girth 5. If 1 is a root, then k = 2 and G = C5.
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Hence we may assume that q has three distinct irrational roots. In this case we will

obtain a contradiction. Index the eigenvalues so that the multiplicities a, b, and c of r1, r2,

and r3 (respectively) satisfy a ≤ b ≤ c. Letting pA be the characteristic polynomial of A,

pA(λ) = (λ − k)(λ − r1)
a(λ − r2)

b(λ − r3)
c. (4)

Combining (2) and (4) yields

pA(λ) = (λ − k)(λ3 − (2k − 2)λ + 1)a(λ − r2)
b−a(λ − r3)

c−a.

Because A has integer entries, pA(λ) ∈ Q[λ]. By applying the division algorithm, p = rs

and p, r ∈ Q[λ] imply s ∈ Q[λ]. Hence (λ − r2)
b−a(λ − r3)

c−a ∈ Q[λ]. Since q(λ) is a monic

cubic polynomial in Q[λ] with three irrational roots, it is irreducible and is the minimal

polynomial of r1, r2, and r3 over Q. Thus q divides (λ − r2)
b−a(λ − r3)

c−a if c > a. In that

case, since r1 is a root of q, it is also a root of (λ−r2)
b−a(λ−r3)

c−a. We conclude that c = a,

and all three eigenvalues have the same multiplicity.

The trace of A is 0, so

k + ar1 + ar2 + ar3 = k + a(r1 + r2 + r3) = Tr(A) = 0. (5)

Together, (3) and (5) require k = 0. Thus q cannot have three distinct irrational roots when

G has girth 5.

4 Girth 3

We now consider uniquely C4-saturated graphs with a triangle. The next lemma gives a

structural decomposition. For a set S ⊆ V (G), let d(x, S) = min{d(x, v) : v ∈ S}, let

N(S) = {v ∈ V (G) : d(v, S) = 1}, and let Nk(S) = {v ∈ V (G) : d(v, S) = k}.

Lemma 6. Let S be the vertex set of a triangle in a graph G, with S = {v1, v2, v3}. For

i ∈ {1, 2, 3}, let Vi = N(vi) − S, and let V ′

i = N2(vi) − N(S). Let R = N3(S). If G is

uniquely C4-saturated, then G has the following structure:

(a) Vi ∩ Vj = ∅ when i 6= j;

(b) each vertex in V ′

i has exactly one neighbor in Vi;

(c) V ′

i ∩ V ′

j = ∅ when i 6= j;

(d) no edges join V ′

i and V ′

j when i 6= j;

(e) N(S) is independent;

(f) each V ′

i induces a matching;

(g) each vertex in R has exactly one neighbor in each V ′

i .
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Figure 1: Structure of uniquely C4-saturated graph with a triangle.

Proof. Since G has diameter 3, we have described all of V (G). Figure 1 makes it easy to see

most of the conclusions. The prohibition of 4-cycles and of triangles with common vertices

implies (a), (b), and (e). The prohibition of 6-cycles implies (c) and (d).

Given these results, (f) is implied by the existence of a unique 4-path joining vi to each

vertex of V ′

i . For (g), each vertex in R is joined by a unique 4-path to each vertex in S; it

can only reach vi quickly enough by moving first to a vertex of V ′

i , and uniqueness of the

4-path prohibits more than one such neighbor.

The main part of the argument is analogous to the regularity, walk-counting, and eigen-

value arguments in Lemma 4 and Theorem 5.

Theorem 7. If G is a C4-saturated graph with a triangle, then R = ∅ in the partition of

V (G) given in Lemma 6.

Proof. If R 6= ∅, then each set Vi and V ′

i in the partition is nonempty. We show first that

G is regular, then show that each vertex lies in one triangle, and finally count 4-paths to

determine the cube of the adjacency matrix and obtain a contradiction using eigenvalues.

Consider V ′

i and Vj with i 6= j. A vertex x in V ′

i reaches each vertex of Vj by a unique

4-path, passing through R and V ′

j . By Lemma 6(g), each vertex of R has one neighbor in V ′

j ,

so each edge from x to R starts exactly one 4-path to Vj. By Lemma 6, the other neighbors

of x are one each in Vi and V ′

i , so d(x) = |Vj| + 2. Since the choice of i and j was arbitrary,

we conclude that each vertex of N2(S) ∪ S has degree a + 2, where a = |V1| = |V2| = |V3|.

For x ∈ Vi and y ∈ Vj with j 6= i, the unique 4-path joining x to any neighbor of y in V ′

j

must pass through V ′

i and R. By Lemma 6(g), these paths use distinct vertices in R; since
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G has no 6-cycle through y, they also use distinct vertices in V ′

i . Hence d(x) ≥ d(y). By

symmetry, all vertices of N(S) have the same degree; let this degree be b + 1.

Consider r ∈ R. By Lemma 6(g), 4-paths from r to Vi may visit another vertex in R and

then reach Vi in exactly one way, or they may go directly to V ′

i , traverse an edge within V ′

i ,

and continue to Vi. The total number of such paths is [d(r)−3]+1, and this must equal |Vi|.

Hence d(r) = a + 2. Since |Vi| = a and d(x) = b + 1 for x ∈ Vi, Lemma 6 yields |V ′

i | = ab.

Consider x ∈ V ′

i and j 6= i. Each 4-path from x to V ′

j starts with an edge in V ′

i , ends

with an edge in V ′

j , or uses two vertices in R. Since each vertex in N2(S) has a neighbors in

R, there are a paths of each of the first two types. Since each vertex of R has degree a + 2,

with three neighbors in N2(S), there are a(a− 1) paths of the third type. Since these paths

reach distinct vertices of V ′

j , and every vertex of V ′

j is reached, |V ′

j | = a(a + 1).

Hence a(a + 1) = ab, and b = a + 1. Since every vertex of G has degree a + 2 or b + 1,

we conclude that G is k-regular, where k = a + 2.

We show next that every vertex of G lies in a triangle. If v lies in no triangle, then

N(v) is independent, and having unique 4-paths from N2(v) to v forces N2(v) to induce a

1-regular subgraph. Since |N2(v)| = k(k − 1), there are
(

k
2

)

edges induced by N2(v). Each

4-path with both endpoints in N(v) has internal vertices in N2(v). Since there are
(

k
2

)

such

pairs of endpoints and each edge within N2(v) extends to exactly one such path, no edge

within N2(v) lies in a triangle with a vertex of N(v). Thus each neighbor of v also lies in no

triangle.

We conclude that neighboring vertices both do or both do not lie in triangles. By induc-

tion on the distance from S, every vertex lies in a triangle. By Lemma 2, each vertex lies in

exactly one triangle.

With A being the adjacency matrix of G, the matrix A3 again counts walks of length 3.

Since each vertex is on one triangle, each diagonal entry is 2. Since G is k-regular, entries

for adjacent vertices are 2k − 1, and by unique C4-saturation the remaining entries equal 1.

Hence A3 = J + (2k − 2)A + I, and again J is expressible as a polynomial in A:

J = A3 − (2k − 2)A − I.

Again 1 is an eigenvector of A with eigenvalue k and of J with eigenvalue n. All other

eigenvalues of A satisfy p(λ) = 0, where

p(λ) = λ3 − (2k − 2)λ − 1.

Arguing as in the proof of Theorem 5, p(λ) cannot be irreducible over Q. If λ is rational,

then λ = ±1, and k ∈ {1, 2}. However, R 6= ∅ requires k ≥ 3.
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Having shown that R = ∅, we now consider instances with N2(S) 6= ∅.

Lemma 8. Let G be a uniquely C4-saturated graph with a triangle having vertex set S. If

N2(S) 6= ∅, then G is one of the three graphs in Figure 2.

•

•
•

• •

••v1

F1

•

•
•

• •

••

• •

v1

F2

•

•
• •

•

•v1

F3

Figure 2: Examples having a vertex at distance 2 from a triangle.

Proof. Let S = {v1, v2, v3}. In the partition defined in Lemma 6, a 4-path joining V ′

i and V ′

j

must pass through R. Since R = ∅, we conclude that only one of {V ′

1
, V ′

2
, V ′

3
} is nonempty;

by symmetry, let it be V ′

1
. Since G has diameter 3, we have V2 = V3 = ∅.

By Lemma 6(f), V ′

1
induces a matching. By Lemma 6(b), every vertex of V ′

1
thus has

degree 2. Consider w ∈ V1 with neighbors u and v in V ′

1
. If u and v are not adjacent, then a

4-path joining them must use w and the neighbor in V ′

1
of one of them. Thus if w has three

pairwise nonadjacent neighbors in V ′

1
, then at least two of them have neighbors in V ′

1
that

are also neighbors of w. This yields two triangles containing w, contradicting Lemma 2. We

conclude that w cannot have more than three neighbors in V ′

1
.

If w ∈ V1 has three neighbors in V ′

1
, then two of them (say x and y) are adjacent. The

only 4-paths that can leave x or y for other vertices of V ′

1
end at the remaining neighbor of

w or its mate in V ′

1
. Hence G = F2.

If w ∈ V1 has two neighbors in V ′

1
, then they are adjacent, and no 4-paths can join them

to other vertices of V ′

1
. Hence G = F3.

In the remaining case, every vertex of V1 has at most one neighbor in V ′

1
. Since any

two vertices of V1 are joined by a 4-path through an edge within V ′

1
, there can only be two

vertices in V1, and G = F1.

One case remains.

Lemma 9. If G is a uniquely C4-saturated graph having a triangle S adjacent to all vertices,

then G consists of S and a matching joining S to the remaining (at most three) vertices.

Proof. We have assumed N2(S) = ∅. Since 4-paths joining vertices in Vi must pass through

V ′

i , each Vi has size 0 or 1. Since Vi ∩ Vj = ∅ (Lemma 6(a)), G is as described.
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We can now prove Theorem 1.

Theorem 1. There are exactly ten uniquely C4-saturated graphs.

Proof. Trivially, K1, K2, and K3 are uniquely C4-saturated. With girth 5, there is only C5,

by Theorem 5. With girth 3, Lemma 8 provides three graphs when some vertex has distance

2 from a triangle, and Lemma 9 provides three when there is no such vertex.
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