
Quicksort — An Example 

We sort the array  
A = (38 81 22 48 13 69 93 14 45 58 79 72) 

with quicksort, always choosing the pivot element to be the element 
in position (left+right) /2.   

The partitioning during the top-level call to quicksort() is illustrated 
on the next page.  During the partitioning process, 

i) Elements strictly to the left of position lo are less than or 
equivalent to the pivot element (69). 

ii) Elements strictly to the right of position hi are greater than 
the pivot element. 

When lo and hi cross, we are done.  The final value of hi is the 
position in which the partitioning element ends up.  

An asterisk indicates an element compared to the pivot element at 
that step. 

 
left left+1          right 
38 81 22 48 13 69 93 14 45 58 79 72 
 

lo        hi hi hi 
69 81* 22 48 13 38 93 14 45 58* 79* 72* 

 
 

lo lo lo lo lo  hi  
 

 
69 58 22* 48* 13* 38* 93* 14 45* 81 79 72 
  

 
 

 
  

hi 
lo lo 

 
  

69 58 22 48 13 38 45 14** 93* 81 79 72 
 

      hi     
14 58 22 48 13 38 45 69 93 81 79 72 

 
 

Swap pivot element 
with leftmost element. 
lo=left+1; hi=right ; 

Move hi left and lo 
right as far as we can; 
then swap A[lo] and 
A[hi], and move hi and 
lo one more position. 

Repeat above 

Repeat above until hi 
and lo cross; then hi is 
the final position of the 
pivot element, so swap 
A[hi] and A[left]. 

Partitioning complete; 
return value of hi. 



Number of comparisons performed by partition(): 
a) No comparison for leftmost column. 
b) One comparison for each remaining column, except two for the 

columns where hi and lo end up.  (lo = hi+1 at the end.) 

C(n) = n + 1, where n is the size of the array (right – left + 1). 

Expected number of exchanges performed by partition(), for a randomly 
ordered array, and a pivot element chosen from a designated position (and 
hence a random element of the array). 

 Say the pivot element turns out to be the kth largest element of the n 
elements, so it ends up in the kth position. 

 Each exchange of A[lo] and A[hi] moves one element initially to the 
right of kth position, but less than (or equivalent but not equal to) the 
pivot element, to a position not right of the kth position.  

Of the k–1 elements in the array less than the pivot element, we would 
expect ((n–k)/(n–1)) (k–1) of these to lie initially right of the kth 
position.   Thus we expect (k–1)(n–k)/(n–1) ≈ k(n–k)/n exchanges. 

Since all values of k, 1 ≤ k ≤ n, are equally likely, the expected number 
of exchanges would be approximately 

  Eave(n)  ≈  (1/n) ∑
n
k=1 k(n–k)/n  

   ≈  (1/n2) (∑n
k=1 kn – ∑

n
k=1 k

2)   

   ≈  (1/n2) (n3/2 – n3/3)   
 Eave(n) ≈  n/6 

In other words, partition() performs only about 1 exchange for every 6 
comparisons.   An alternate version, designed specifically to work with 
moves, performs about one move for each 3 comparisons.   

partition() does an extremely good job of minimizing the movement of 
elements.  This is probably why quicksort tends to be faster than merge-
sort in the expected case, even though it performs move comparisons 

Here is the tree of recursive calls to quicksort.  Calls to sort 
subarrays of size 0 or 1 are not shown.  (They could be omitted.) 
 
 

quicksort( A, 1, 12) 
38 81 22 48 13 69 93 14 45 58 79 72 
14 58 22 48 13 38 45 69 93 81 79 72 

quicksort( A, 9, 12) 
93 81 79 72 
79 72 81 93 

quicksort( A, 1, 7) 
14 58 22 48 13 38 45 
38 45 22 14 13 48 58 

quicksort( A, 1, 5) 
14 45 22 38 13 
14 13 22 38 45 

quicksort( A, 1, 2) 
14 13 
13 14 

quicksort( A, 4, 5) 
38 45 
38 45 

quicksort( A, 9, 10) 
79 72 
72 79 



The Quicksort Algorithm 
(each interval partitioned using its middle element) 

partition( A, left, right) rarranges A[left ..right] and finds and returns an 
integer q, such that  

A[left], ..., A[q–1] <∼ pivot,   A[q] = pivot,   A[q+1], ..., A[right] > pivot, 
where pivot is the middle element of a[left..right], before partitioning.  (To 
choose the pivot element differently, simply modify the assignment to m.) 

Integer partition( T[] A, Integer left, Integer right) 
 m = left + right / 2;     
 swap( A[left],  A[m]); 
 pivot = A[left]; 
 lo = left+1;  hi = right; 
 while ( lo ≤ hi ) 
  while ( A[hi] > pivot ) 
   hi = hi – 1; 
  while ( lo ≤ hi  and A[lo] <∼ pivot ) 
   lo = lo + 1; 
  if ( lo ≤ hi )  
     swap( A[lo], A[hi]); 
    lo = lo + 1;  hi = hi – 1; 
 swap( A[left], A[hi]); 
 return hi 
    

quicksort( A, left, right) sorts A[left ..right] by using partition() to partition 
A[left ..right], and then calling itself recursively twice to sort the two subarrays. 

void quicksort( T[] A, Integer left, Integer right) 
if ( left < right ) 

  q = partition( A, left, right); 
  quicksort ( A, left, q–1); 
  quicksort ( A, q+1, right);      



Later we will show that quicksort runs in (n2) time in the worst case,
but that it runs in (n lg(n)) time in the expected case, assuming the 
input is randomly ordered. 

At the moment, let us consider the extra space (in addition to the array 
being sorted) used by quicksort. 

partition() uses only constant extra space. 

At first, it might appear that quicksort() also uses only constant 
extra space. 

o But this can never be the case for a recursive function (unless 
the maximum depth of recursion is bounded by a constant). 

o Each time a function is called (recursively or otherwise), we 
get a new activation of the function.  The activation continues 
to exist until the function returns to its caller. 

o Each activation has its own activation record, or stack frame,
on the run-time stack. 

The activation record may contain space for automatic 
local variables and parameters, a return address, and an 
area to save the current status.

o For a recursive function, the memory requirements are 
determined by the maximum number of activations existing at 
any one time, that is, by the maximum depth of recursion. 

For quicksort() as we have implemented it, the maximum depth of 
recursion will be n in the worst case. 

o This would occur if every call to partition() produced as 
uneven a split as possible (sublist sizes n 1 and 0). 



o It would make the extra space requirements (n) — possibly 
with a fairly large constant multiplying n.

With a little effort, we can limit the maximum depth of recursion 
to approximately lg(n), even in the worst case.

o Then the extra space required will be (lg(n)) — insignificant 
compared to the (n) space for the array being sorted.  

o Note, however, the worst case running time remains (n2).

quicksort2( A, left, right) performs the same function as quicksort( A,
left, right), but the depth of recursion is limited to lg(n), and the extra 
space is only ( lg(n)) even in the worst case. 

void quicksort2( T[] A,  Integer left,  Integer right)
 while ( left < right ) 

q = partition( A, left, right); 
if ( q left < right q ) 

quicksort2 ( A, left, q–1);  // Recursive call sorts smaller sublist
left = q + 1;        // Loop back to sort larger sublist

else
quicksort2 ( A, q+1, right); // Recursive call sorts smaller sublist
right = q  1;     // Loop back to sort larger sublist

Each time quicksort2() calls itself recursively, it does so only for the 
smaller of the two sublists.  This means that each time the depth of 
recursion rises by one, the size of the input to quicksort2() is cut at least 
in half.  Thus the depth of recursion cannot exceed lg(n).

Note the larger sublist is sorted by repeating the while-loop with the 
value of left or right adjusted to correspond to the larger sublist, rather 
than the original list.  This requires no additional space. 



Performance
 
of Quicksort 

We will count the number C(n) of comparisons performed by quicksort 
in sorting an array of size n. 

We have seen that partition() performs n comparisons (possibly n−1 or 
n+1, depending on the implementation). 

 In fact, n−1 is the lower bound on the number of comparisons that 
any partitioning algorithm can perform. 

 The reason is that every element other than the pivot must be 
compared to the pivot; otherwise we have no way of knowing 
whether it goes left or right of the pivot. 

So our recurrence for C(n) is: 

 C(n) = n + C(k−1) + C(n−k),   C(0) = C(1) = 0    

A bad case (actually the worst case):  At every step, partition() 
splits the array as unequally as possible (k = 1 or k = n). 

 Then our recurrence becomes 

  C(n) = n + C(n−1),  C(0) = C(1) = 0 

 This is easy to solve. 

     

Sort right subarray 
by recursive call 

 to quicksort 

Sort left subarray 
by recursive call  

to quicksort 

Partition 

(k = final position  
  of pivot element) 

   C(n) =  n + C(n−1) 
    =  n + n−1 + C(n−2) 
    =  n + n−1 + n−2 + C(n−3) 
    =  n + n−1 + n−2 + ... + 3 + 2 + C(1) 
    =  (n + n−1 + n−2 + ... + 3 + 2 + 1) − 1 

    =  n(n+1)/2  − 1 

    ≈  n2 /2 

This is terrible.  It is no better than simple quadratic time 
algorithms like straight insertion sort. 

A good case (actually the best case):  At every step, partition() 
splits the array as equally as possible (k = (n+1)/2; the left and right 
subarrays each have size (n−1)/2)). 

 This is possible at every step only if n = 2k−1 for some k.  
However, it is always possible to split nearly equally.  The 
recurrence becomes  

   C(n) = n + 2C((n−1) /2),  C(0) = C(1) = 0,  

which we approximate by 

   C(n) = n + 2C(n/2),  C(1) = 0 

 This is the same as the recurrence for mergesort, except that the 
right side has n in place of n−1.  The solution is essentially the 
same as for mergesort: 

   C(n) = n lg(n). 

 This is excellent — essentially as good mergesort, and essentially 
as good as any comparison sorting algorithm can be.  

0 



The expected case:   Here we assume either (i) the array to be 
partitioned is randomly ordered, or (ii) the pivot element is selected 
from a random position in the array. 

In either case, the pivot element will be a random element of the 
array to be partitioned.  That is, for k = 1, 2, ..., n, the probability 
that the pivot element is the kth largest element of the array is 1/n.  
(Recall that, if the pivot element is the kth largest element of the 
array, it ends up after partitioning in position k.)  

In the recurrence   

  C(n) = n + C(k−1) + C(n−k),  C(0) = C(1) = 0, 

all values of k are equally likely.  We must average over all k. 

    C(n) = (1/n) ∑
n
k=1 (n + C(k−1) + C(n−k)),   C(0) = C(1) = 0,  

   = n + (1/n)∑
n
k=1 C(k−1) + (1/n)∑

n
k=1 C(n−k) 

Note: ∑
n
k=1 C(k−1) = ∑

n
i
−
=

1

0 C(i),  by substituting i = k−1. 

  ∑
n
k=1 C(n−k) = ∑

n
i
−
=

1

0 C(i),  by substituting i = n−k. 

So our recurrence becomes 

   C(n) = n + (2/n)∑
n
i
−
=

1

0 C(i),   or 

   nC(n) = n2 + 2∑
n
i
−
=

1

0 C(i) 

Writing down the same recurrence with n−1 replacing n, we get 

   (n−1) C(n−1) = (n−1)2 + 2∑
n
i
−
=

2

0 C(i). 

Subtracting this recurrence from the one above it gives 

 nC(n) − (n−1) C(n−1) = n2 − (n−1)2 + 2C(n−1),  or 

 nC(n) = (n+1) C(n−1) + 2n−1 

0 

Dividing by n(n+1) gives 

 C(n) / (n+1) = C(n−1) /n + (2n−1) /(n (n+1)). 

To a very good approximation,  

 C(n) / (n+1) = C(n−1) /n + 2/n. 

Now if let D(n) = C(n) / (n+1) , then the recurrence becomes 

 D(n) = D(n−1) + 2 / n,   D(1) = 0. 

This is easy to solve: 

    D(n) =  D(n−1) + 2 / n 
   =  D(n−2) + 2 / (n−1) + 2 / n 
   =  D(n−3) + 2 / (n−2) + 2 / (n−1) + 2 / n 

   =  D(1) + 2 / 2 + 2 / 3 + ... + 2 / (n−2) + 2 / (n−1) + 2 / n 

=  2 ln(n) − 2 

≈  2 ln(n) 

=  2 ln(2) lg(n) 

≈  1.39 lg(n) 

So C(n) = (n+1) D(n) ≈ 1.39 (n+1)  lg(n),  or   C(n) ≈ 1.39 n lg(n)  

The expected case for quicksort is fairly close to the best case 
(only 39% more comparisons) and nothing like the worst case. 

In most (not all) tests, quicksort turns out to be a bit faster than 
mergesort.   

 Quicksort performs 39% more comparisons than mergesort, but 
much less movement (copying) of array elements.   



We saw that, in the expected case, quicksort performs one 
exchange for every six comparisons, or about 1.39 n lg(n) / 6 ≈ 
0.23 n lg(n)  exchanges. 

A slightly different partitioning algorithm performs one move 
(copy) for each three comparisons, or about 0.46 n lg(n)  moves. 

By contrast, the version of mergesort given in class performs 
2n lg(n) moves, although this can be reduced to n lg(n) moves  
— still more than twice as many as quicksort is likely to 
perform. 

With a randomized version of quicksort (pivot element chosen 
randomly), the standard deviation in the number of comparisons is also 
small.  

The probability of performing substantially more than 1.39 n lg(n) 
comparisons is extremely low. 

Quicksort is not stable, since it exchanges nonadjacent elements. 

If stability is not required, quicksort provides a very attractive 
alternative to mergesort.   

 Quicksort is likely to run a bit faster than mergesort — perhaps 1.2 
to 1.4 times as fast. 

Quicksort requires less memory than mergesort. 

A good implementation of quicksort is probably easier to code than 
a good implementation of mergesort. 


