Dynamic Programming: Example 2 Longest Common Subsequence

- *Problem:* Let $x_1x_2...x_m$ and $y_1y_2...y_n$ be two sequences over some alphabet. (We assume they are strings of characters.) Find a longest common subsequence (LCS) of $x_1x_2...x_m$ and $y_1y_2...y_n$.
- Example: $x_1x_2x_3x_4x_5x_6x_7x_8 = \underline{\mathbf{b}} \underline{\mathbf{a}} \underline{\mathbf{c}} \underline{\mathbf{b}} \underline{\mathbf{f}} \mathbf{f} \underline{\mathbf{c}} \underline{\mathbf{b}}$ $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = \mathbf{d} \underline{\mathbf{a}} \underline{\mathbf{b}} \underline{\mathbf{c}} \underline{\mathbf{b}} \underline{\mathbf{c}}$ $z_1z_2z_3z_4z_5 = \mathbf{b} \underline{\mathbf{a}} \underline{\mathbf{b}} \mathbf{f} \mathbf{c}$ is an LCS (shown below).

Subproblems: Find an LCS of $x_1x_2...x_i$ and $y_1y_2...y_j$ $(0 \le i \le m, 0 \le j \le m)$.

Optimal substructure: If $z = z_1 z_2 \dots z_p$ is a LCS of $x_1 x_2 \dots x_m$ and $y_1 y_2 \dots y_n$, then at least one of these most hold.

i) x_m = y_n, and z₁z₂...z_{p-1} is an LCS of x₁x₂...x_{m-1} and y₁y₂...y_{n-1},
ii) x_m ≠ y_n, and z₁z₂...z_p is an LCS of x₁x₂...x_{m-1} and y₁y₂...y_n,
iii) x_m ≠ y_n, and z₁z₂...z_p is an LCS of x₁x₂...x_m and y₁y₂...y_n.

Let c_{ij} = length of LCS of $x_1x_2...x_i$ and $y = y_1y_2...y_j$.

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ 1 + c[i-1,j-1] & \text{if } x_i = y_j, \\ \max(c[i-1,j], c[i,j-1]) & \text{if } x_i \neq y_j. \end{cases}$$
$$b[i,j] = \begin{cases} \text{"}\uparrow_\text{"} & \text{if } x_i = y_j, \\ \text{"}\uparrow^\text{"} & \text{if } x_i \neq y_i \text{ and } c[i-1,j] \ge c[i,j-1], \end{cases}$$

if $x_i \neq y_j$ and c[i-1,j] < c[i,j-1].

We compute the c[i,j] and b[i,j] in order of increasing i+j, or alternatively in order of increasing *i*, and for a fixed *i*, in order of increasing *j*.

Example: $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 = \mathbf{b} \mathbf{a} \mathbf{c} \mathbf{b} \mathbf{f} \mathbf{f} \mathbf{c} \mathbf{b}$ $y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_9 = \mathbf{d} \mathbf{a} \mathbf{b} \mathbf{e} \mathbf{a} \mathbf{b} \mathbf{f} \mathbf{b} \mathbf{c}$

Row *i*, column *j* of the table below contains the value of c[i,j] followed (except when i = 0 or j = 0) by that of b[i,j]

	0	1	2	3	4	5	6	7	8	9
		d	a	b	e	a	b	f	b	c
0	0	0	0	0	0	0	0	0	0	0
1 b	0	0 ↑	0 ↑	1 ↑	1 ←	1 ↑	1 ↑	1 ←	1 ↑	1 ←
2 a	0	0 ↑	1 ↑	1 ↑	1 ↑	2 ↑	2 ←	2 ←	2 ←	2 ←
3 c	0	0 ↑	1 ↑	1 ↑	1 ↑	2 ↑	2 ↑	2 ↑	2 ↑	3 1
4 b	0	0 ↑	1 ↑	2 ↑	2 ←	2 ↑	3 ↑	3 ←	3 ↑	3 ↑
5 f	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ←	4 ←	4 ←
6 f	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4	4 ↑	4 ↑
7 c	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ↑	4 ↑	5 ↑
8 b	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ↑	5 1	5 ←

We can compute each table element in constant time, so the entire table takes $\Theta(mn)$ time.

We can write down an LCS by starting in the lower right corner and following the arrows backward.

Whenever we reach a square containing a " $_$ ", say in row *i* and column *j*, we insert the character $x_i = y_j$ at the beginning of the subsequence.

	0	1 d	2 a	3 b	4 e	5 a	6 b	7 f	8 b	9 c
0	0	0	0	0	0	0	0	0	0	0
1 b	0	0 ↑	0 ↑	1 ↑	1 ←	1 ↑	1 ↑	1 ←	1 ↑	1 ←
2 a	0	0 ↑	1 ↑	1 ↑	1 ↑	2 ↑	2 ←	2 ←	2 ←	2 ←
3 c	0	0 ↑	1 ↑	1 ↑	1 ↑	2 ↑	2 ↑	2 ↑	2 ↑	3 ↑
4 b	0	0 ↑	1 ↑	2 ↑	2 ←	2 ↑	3 ↑	3 ←	3 1	3 ↑
5 f	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 1	4 ←	4 ←
6 f	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ↑	4 ↑	4 ↑
7 c	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ↑	4 ↑	5 1
8 b	0	0 ↑	1 ↑	2 ↑	2 ↑	2 ↑	3 ↑	4 ↑	5 ↑	5 ↑

An LCS is $x_1x_2x_4x_5x_7 = y_3y_5y_6y_7y_9 = \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{f} \mathbf{c}$.

This computation takes $\Theta(m+n)$ time.