
All-Pairs Shortest Paths 

Problem: G is a weighted graph or digraph with n vertices, 
which for simplicity we label simply 1,2,...,n.   

We are given the adjacency matrix W = (wij),   
wij = weight of edge from i to j (∞ if no such edge, 0 
if i = j).  All weights are positive. 

Find the distance matrix D = (dij),  
dij = distance from i to j. 

Idea:  For k = 0, 1, ..., n, let  

shortk(i, j) = shortest path from i to j all of whose 
intermediate vertices lie in the set 
{1,2,...,k}. 

dij
k = length of shortk(i,j). 
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k = 0: short0(i,j) = edge from i to j. 
  dij

0 = wij. 

k = n: shortn(i,j) = shortest path from i to j. 
  dij

n = dij. 

Initially, we know all the dij
0.   

Our goal is to find all the dij
n. 

How can we find all of the dij
k, assuming we already know 

the dij
k–1 ? 

Case 1:  k is not an intermediate vertex on shortk(i, j). 

shortk(i, j) = shortk –1(i, j) 

dij
k = dij

k–1. 

 

Case 2:  k is an intermediate vertex on shortk(i, j). 

shortk(i, j) = shortk –1(i,k) +  shortk –1(k, j). 

dij
k = dik

k–1 + dkj
k–1. 

 

Vertex k doesn’t 
help.  (Always 
the case if k = i 
or k = j.) 



 

 

Which case applies, case 1 or case 2? 

 Answer:  Whichever minimizes dij
k. 

  dij
k = min( dij

k–1,  dik
k–1 + dkj

k–1)   

If we let   

pij
k =  

 then 

pij
k is true if and only if k is an intermediate point of shortk(i, j). 

  

shortest path from i to j (assuming it passes through  k) 

i  

  

j 

k  

  
   

shortest path from i to k shortest path from k to j 

true    if dik
k–1 + dkj

k–1
 produces the minimum above, 

false  otherwise, 

Rather than compute all the pij
k, the algorithm below computes 

 pij = largest k for which pij
k is true, or 0 if pij

k is false for all k. 

Note 

pij = the highest-numbered intermediate point on the shortest 
path from i to j, or 0 if there are no intermediate points.  

We can compute all the dij
k and pij in Θ(n3) time by: 

for ( i = 1,2,...,n ) 
 for ( j = 1,2,...,n ) 
  dij

0 = wij; 
  pij = 0; 
for ( k = 1,2,...,n ) 
 for ( i = 1,2,...,n ) 
  for ( j = 1,2,...,n ) 
   if ( dik

k–1 + dkj
k–1 < dij

k–1 ) 
    dij

k = dik
k–1 + dkj

k–1; 
    pij

 = k; 
   else 
    dij

k = dij
k–1; 

     
The matrix D = (dij

n) is the distance matrix, and the matrix P = 
(pij) has the information needed to find the shortest path between 
any pair of points. 



Using the matrix P, we may print the shortest path from i to j: 

print(i);   
print_intermediate_points( i, j);    
print(j); 
 
void print_intermediate_points( int i, int j) 
 k = pij ; 
 if ( k > 0 ) 
  print_intermediate_points( i, k); 
  print( k); 
  print_intermediate_points( k, j); 
 return; 

Our algorithm for computing D and P uses Θ(n3) space.  We can 
reduce space (but not time) to Θ(n2) by updating the dij

k in place. 

   Consider a single pass through the outer loop (fixed k). 
dij doesn’t change if i=k or j=k, so there is no problem of 
using the new value of dik or dkj when we need the old. 

for ( i = 1,2,...,n ) 
 for ( j = 1,2,...,n )  
  dij = wij; 
  pij = 0; 
for ( k = 1,2,...,n ) 
 for ( i = 1,2,...,n)  
  for ( j = 1,2,...,n ) 
   if ( dik

 + dkj < dij
 ) 

    dij = dik
 + dkj; 

    pij
 = k;  


