
All-Pairs Shortest Paths

Problem: G is a weighted graph or digraph with n vertices,
which for simplicity we label simply 1,2,...,n.

We are given the adjacency matrix W = (wij),
wij = weight of edge from i to j (∞ if no such edge, 0
if i = j). All weights are positive.

Find the distance matrix D = (dij),
dij = distance from i to j.

Idea: For k = 0, 1, ..., n, let

shortk(i, j) = shortest path from i to j all of whose
intermediate vertices lie in the set
{1,2,...,k}.

dij
k = length of shortk(i,j).

d17

0 = ∞

d17
1 = ∞

d17
2 = 48

d17
3 = 45

d17
4 = 44

d17
5 = 44

d17
6 = 35

d17
7 = 35

20

6

17

12

14 13

40 10
33

8

26

8

1

2

4
7

3

5

6

k = 0: short0(i,j) = edge from i to j.
 dij

0 = wij.

k = n: shortn(i,j) = shortest path from i to j.
 dij

n = dij.

Initially, we know all the dij
0.

Our goal is to find all the dij
n.

How can we find all of the dij
k, assuming we already know

the dij
k–1 ?

Case 1: k is not an intermediate vertex on shortk(i, j).

shortk(i, j) = shortk –1(i, j)

dij
k = dij

k–1.

Case 2: k is an intermediate vertex on shortk(i, j).

shortk(i, j) = shortk –1(i,k) + shortk –1(k, j).

dij
k = dik

k–1 + dkj
k–1.

Vertex k doesn’t
help. (Always
the case if k = i
or k = j.)

Which case applies, case 1 or case 2?

 Answer: Whichever minimizes dij
k.

 dij
k = min(dij

k–1, dik
k–1 + dkj

k–1)

If we let

pij
k =

 then

pij
k is true if and only if k is an intermediate point of shortk(i, j).

shortest path from i to j (assuming it passes through k)

i

j

k

shortest path from i to k shortest path from k to j

true if dik
k–1 + dkj

k–1
 produces the minimum above,

false otherwise,

Rather than compute all the pij
k, the algorithm below computes

 pij = largest k for which pij
k is true, or 0 if pij

k is false for all k.

Note

pij = the highest-numbered intermediate point on the shortest
path from i to j, or 0 if there are no intermediate points.

We can compute all the dij
k and pij in Θ(n3) time by:

for (i = 1,2,...,n)
 for (j = 1,2,...,n)
 dij

0 = wij;
 pij = 0;
for (k = 1,2,...,n)
 for (i = 1,2,...,n)
 for (j = 1,2,...,n)
 if (dik

k–1 + dkj
k–1 < dij

k–1)
 dij

k = dik
k–1 + dkj

k–1;
 pij

 = k;
 else
 dij

k = dij
k–1;

The matrix D = (dij

n) is the distance matrix, and the matrix P =
(pij) has the information needed to find the shortest path between
any pair of points.

Using the matrix P, we may print the shortest path from i to j:

print(i);
print_intermediate_points(i, j);
print(j);

void print_intermediate_points(int i, int j)
 k = pij ;
 if (k > 0)
 print_intermediate_points(i, k);
 print(k);
 print_intermediate_points(k, j);
 return;

Our algorithm for computing D and P uses Θ(n3) space. We can
reduce space (but not time) to Θ(n2) by updating the dij

k in place.

 Consider a single pass through the outer loop (fixed k).
dij doesn’t change if i=k or j=k, so there is no problem of
using the new value of dik or dkj when we need the old.

for (i = 1,2,...,n)
 for (j = 1,2,...,n)
 dij = wij;
 pij = 0;
for (k = 1,2,...,n)
 for (i = 1,2,...,n)
 for (j = 1,2,...,n)
 if (dik

 + dkj < dij
)

 dij = dik
 + dkj;

 pij
 = k;

