All-Pairs Shortest Paths

Problem: G is a weighted graph or digraph with n vertices,
which for simplicity we label simply 1,2,...,n.

We are given the adjacency matrix W = (wy),

w;; = weight of edge from i to j (oo if no such edge, 0

if i =j). All weights are positive.

Find the distance matrix D = (dj),
d; = distance from i to j.

Idea: Fork=0,1, ..., n,let

short,(i,j) = shortest path from i to j all of whose
intermediate vertices lie in the set

(1,2,...k}.

d,jk = length of short,(i.)).

d170 =
d171 =
d,; =48
d,;; =45
d,;; =44
d,;; =44
d;’ =35

d177:35

k = 0: shorty(ij)=edge fromito .

0 _
dij _Wif'

k = n: short,(i,) = shortest path from i to j.
dijn = dl]

Initially, we know all the d ,jo.

Our goal is to find all the d;".

How can we find all of the d l-jk, assuming we already know

the d; "2

Case 1: kis not an intermediate vertex on short(i,j).

short(i,)) = short;_(i,)) Vertex k doesn’t
_ help. (Always
dijk :dijk g the case ifk =i
ork=j.)

Case 2: k is an intermediate vertex on short(i,j).

short,(i,)) = short,_,(i,k) + short;_(k.j).

k _ k-1 k—1
dif = dy ' + dyf .

shortest path from i to k shortest path from & to j

AN A
- N I

@

S~ _
——

shortest path from i to j (assuming it passes through k)

Which case applies, case 1 or case 2?

. e k
Answer: Whichever minimizes d;".

k_ . k—1 k-1 k-1
d,‘j —mll’l(dij . dik +dkj)

If we let
P true ifd; "+ dkjkfl produces the minimum above,
b false otherwise,
then

)% ,-jk is true if and only if £ is an intermediate point of short(i,j).

Rather than compute all the p ijk, the algorithm below computes

pi; = largest k for which pyk is true, or 0 if p,f 1s false for all £.

Note

pi; =the highest-numbered intermediate point on the shortest
path from i to j, or O if there are no intermediate points.

We can compute all the d,]-k and p;; in O(n’) time by:

for (i=1,2,..,n)
for (j=1,2,..,n)
dy’ = wy;
pi=0;
for (k=1,2,...,n)
for (i=1,2,..,n)
for (j=1,2,...,n)
if (dikkfl " dk.kfl < di.kfl)
di =dy ' +di
pi=k;
else
di/'k — di/'k_l;

The matrix D = (d;;") is the distance matrix, and the matrix P =
(p;;) has the information needed to find the shortest path between
any pair of points.

Using the matrix P, we may print the shortest path from i to ;:

print(i);
print_intermediate _points(1i,j);
print(y);

void print_intermediate points(int i, int ;)
k=pj;
if(£>0)
print_intermediate points(i, k);
print(k);
print_intermediate points(k, j);
return;

Our algorithm for computing D and P uses @(r’) space. We can
reduce space (but not time) to ©(n*) by updating the d ijk in place.

Consider a single pass through the outer loop (fixed k).

d; doesn’t change if i=k or j=k, so there is no problem of
using the new value of dj or dj; when we need the old.

for (i=12,..n)
for (j=12,...,n)
pi=0;
for (k=1.2,..n)
for (i=1,2,....,n)
for (j=12,..,n)
if (dy+dy<dy)
dj = dy+dy;
pi=k

