
Depth-first Search of a Digraph
(implemented using a stack)

Global variables and initializations:

S: A stack of vertices. The vertices on S will be
the vertices on the path from the starting vertex
up to and including the current vertex.

adjList: An array of lists. adjList[v] is the adjacency
list of vertex v. For simplicity we allow the
adjacency lists to be destroyed by the algo-
rithm. removeElement(adjList[v]) will remove
an element from adjList[v] and return it.

color: an array of vertices. color[v] will be the color
of vertex v. Initially color[v] = white for all
vertices.

time: relative time, initially 0.

d: an array of vertices. d[v] will be the “discover
time” of vertex v, i;e., the time at which v is
pushed onto the stack, colored gray, and
preprocessed.

f: an array of vertices. f[v] will be the “finish
time” of vertex v, i.e., the time at which v is
postprocessed, colored black, and popped from
the stack.

Depth first search of entire graph: Perform depth-first search
from some white vertex, then from a second white vertex, a third,
etc., until no white vertices remain.

void depthFirst(Digraph G)
 Initialize variables as above;
 for (each vertex v of G)
 if (color[v] == white)
 depthFirstFromVertex(G, v);
 return;

Depth first search from a single vertex: Performs depth-first
search from a specific starting vertex.

void depthFirstFromVertex(Digraph G, Vertex start)
 discoverVertex(start);
 while (not empty(S))
 if (adjList[top(S)] is nonempty)
 adjacent = removeVertex(adjList[top(S)]);
 if (color[adjacent] == white)
 discoverVertex(adjacent);
 else if (color[adjacent] == gray)
 Process back edge (top(S),adjacent);
 else if (d[adjacent] < d[top(S)])
 Process cross edge (top(S),adjacent);
 else
 Process forward edge (top(S),adjacent);
 else
 finishTopVertex();
 return;

Discovering of a new vertex: Discover a new vertex x, adjacent
to top(S). The new vertex is pushed on the stack, colored gray, and
its dicover time is recorded. It undergoes any application-specific
preorder processing.

void discoverVertex(Vertex x)
 push(S, x);
 color[top(S)] = gray;
 d[top(S)] = ++time;
 Preorder process vertex top(S);
 return;

Exiting from the current vertex: Exit a vertex after all edges out
of the vertex have been explored. Any application-specific
postorder processing of the vertex is performed. The vertex is
colored black, and its finish time is recorded. It is then popped
from the stack.

void finishTopVertex()
 Postorder process vertex top(S).
 f [top(S)] = ++time;
 color[top(S)] = black;
 pop(S)
 return;

The running time of this algorithm is Θ(n+e), apart from the time
for application-specific processing of the vertices and edges.

