
Applications of Depth-First Search:
Topological Sort

Label the vertices of an acyclic digraph G by 1, 2, ..., n, so that

 vw is an edge of G ⇒ label[v] < label[w] .

Perform a depth-first search of the digraph, with these additions:

Initialization: k = n;

Postorder processing label[v] = k;
of vertex v : ––k;

Back edge processing detect error (graph is not acyclic);
of edge vw :

5

1

4
13

6

15 14

7

9

11

10

16

2

8

3

12

17

A
F

E
M

C

H

I

G

K

L

Q

ON

B
D

P

J

Another example of Topological Sort
(same digraph, different order to choosing verticies)

Vertices selected in reverse alphabetical order, when an arbitrary
choice must be made. Thick border indicates a starting vertex in
depth-first search.

6

1

2
3

7

15 14

8

10

12

11

16

4

9

5

13

17

A
F

E
M

C

H

I

G

K

L

Q

O N

B
D

P

J

Applications of Depth-First Search:
Critical Path

We have a directed acyclic graph, in which each vertex v repre-
sents a task taking a known amount of time (duration[v]). An edge
from v to w indicates that task v depends on task w; that is, v
cannot start until w has finished. (Otherwise, tasks may be
performed in parallel.)

Find the earliest possible finish time.

Find a critical path (a sequence of tasks, each dependent on the
next, that prevents an earlier finish).

*

*

*

*

*

*

*

*

*

*
*

37,E

55,F

46,D

15,N

32,H

11,Q12,O

26,I

15,L

3,J

12,Q

7,P

48,C

19,G

45,D

2,–

5,–

A
7

F
3

E
6

D
5

C
8

H
7

I
4

G
3

K
1

L
5

Q
2

O
4

N
1

B
9

M
3

P
5

J
2

13,J
S
11

22,S
R
9

55,A
done

0

Adjoin a vertex labeled “done”, with duration 0, and an edge from
done to each source in the graph. Then perform a depth-first
search, with these additions:

Initialization: for (each vertex v of graph)
 eft[v] = 0;
 critDep[v] = null;

Tree edge postorder if (eft[w] > eft[v])
processing and cross edge eft[v] = eft[w];
processing of edge vw:1 critDep[v] = w;

Postorder processing eft[v] = eft[v] + duration[v];
of vertex v:

Back edge processing detect error (graph is not
edge vw: acyclic);

Upon termination, eft[v] is the earliest finish time of task v. In
particular, eft[done] is the earliest finish time for the entire set of
tasks.

The critical path is c0,c1,...,ck, where
 c0 = done,
 ci = critDep[ci–1],
 critDep[ck] = null.

1 No harm in performing these operations for descendent edges as well.

Applications of Depth-First Search:
Strongly Connected Components — Phase 1

Perform a depth-first search of the digraph, numbering the vertices
as in topological ordering, except that back edges are not treated as
an error.

8

7

9

10

4

5
11

12

14 15

16
17

13

2

3 A

B

C
D

E

H
I

G

J
K

L

Q

P

O N

F M 1
6

Strongly Connected Components — Phase 2

Form the transpose graph (edge directions reversed), retaining the
vertex numbering of phase 1.

Perform a depth-first search of the transpose graph. In the outer
loop (for loop), process the vertices in the order of their numbers
(assigned in phase 1).

Each white vertex chosen in the outer loop is the leader of a
strongly connected component, and the depth-first search from that
leader processes the vertices of the component.

5,A

16,H

1,A

8,O

7,O

9,O

10,N

4,A

11,C

12,H
14,H 15,H

17,H

13,H

2,A

3,A
6,N

A

B

C
D

E

H

I

G

J
K

L

Q

P

O N

F M

