Graphs and Digraphs — Examples

An (undirected) graph G = (V,E) adjacency matrix for G
° G (010101
100010
B E 000100
101011
Q 010100
©) 100100,
/ B » D » F
11— A » E
adjacency
list for G » D
\\ R - -
- A » C E o F
\\ B o D
\ A » D

n vertices, e edges (0 < e < n(n—1)/2 = n*/2).
Adjacency matrix: ©(n*) space. An algorithm that examines the
entire graph structure will require Q(»*) time.

Adjacency list: ©(n+e) space. An algorithm that examines the
entire graph structure will require Q(n+e) time.

Often, e << n’. In this case, the adjacency list may be preferable.

A digraph G = (V,E) adjacency matrix for G

o O -~ O O O
OO -~ O O O -
o O -~ O O O
- a2 O O O O
o O O o -~ 0O
O O O O O -~

A 4
_I.I

adjacency

list for G

>
@)

/

In a digraph, e may be as high as n(n—1) = n’, but otherwise the
remarks on the previous page hold.

A weighted digraph G = (V,E, W) adjacency matrix for G

(A

o 3 o oo 12

00
00 00 00 o0 11 oo
00

00 00 00 00
9O 8 o

0 14 oo 17 oo

\0000002100)

8 8 8 8

A 4
_I.I

12

adjacency

list for G

/

In the adjacency matrix, a non-existent edge might be denoted by 0
or o, For example, a non-existent edge could represent

1) a capacity of 0, or
11) a cost of .

Directed Acyclic Graphs (DAGSs)

In any digraph, we define a vertex v to be
a source, if there are no edges leading into v, and

a sink if there are no edges leading out of v.

A directed acyclic graph (or DAG) 1s a digraph that has no cycles.

Example of a DAG:

G %
N S

Theorem Every finite DAG has at least one source, and at least one
sink.

In fact, given any vertex v, there 1s a path from some
source to v, and a path from v to some sink.

Note: This theorem need not hold in an infinite DAG. For
example, this DAG has neither a source nor a sink.

R CROSONOSOSOSE

Note: In any digraph, the vertices could represent tasks, and the edges
could represent constraints on the order in which the tasks be
performed.

For example, A must be performed before B, F, or G.
B must be performed before C or E.
C must be performed before G.
D must be performed before C.
E must be performed before D.
F must be performed before D.

We will see that the constraints are consistent if any only if the
digraph has no cycles, 1.e., is a DAG.

A topological sort of a digraph G = (V,E) 1s labeling of the vertices
by 1, 2, ..., |[V| (or by elements of some other ordered set) such that

(u,v) 1s aedge = label(u) <label(v).

We will see that a digraph has a topological sort if and only if it is a
DAG.

For a tasks / constraints graph, a topological sort provides an order
in which the tasks can be performed serially, and conversely any
valid order for performing the tasks serially gives a topological sort.

Strongly Connected Components of a Digraph

If G 1s a digraph, define a relation ~ on the vertices by:
a ~ b 1s there 1s both a path from a to b, and a path from b to a.

This is an equivalence relation. The equivalence classes are called
the strong components of G.

G is strongly connected if it has just one strong component.

This digraph has five strong components.

........
.,
L
‘e
.
0
.
.
‘e
.

annw
aun®

Py
.
.

....................
.......
. .
. L
. .
.....
. LN
““““
.
S
-

.
.
o

Given a strongly connected digraph G, we may form the component
digraph G°“ as follows:

SCC
G

1) The vertices of are the strongly connect components

of G.

ii) There is an edge from v to w in G°“* if there is an edge
from some vertex of component v to some vertex of
component w in G.

Theorem: The component graph of a digraph is a DAG.

Here is the component digraph for the digraph on the preceding
page.

: ®)

