The Heapsort Algorithm

void max-heapify( T[] 4, Integer n, Integer i)
p=1i;
while (2p <n)
if (2p+1 <mn and A[2p+1]> A[2p])
m=2p+l1;
else
m=2p;
if (A[p] <A[m])
swap( A[p], A[m]);
p=m;
else
return;

Initially: A 1s an array of size at
least n, and 1 <i <n. The max-
heap property holds everywhere
in the subtree of A[1..n] rooted at
A[i], except possibly at A[7]
itself.

Upon return: The subtree of
A[1..n] rooted at A[i] is a max-
heap. The rest of 4 is unchanged.

Comparisons: at most 2h, where
h is the height of the subtree.
This height 1s

Lif w2’ k1 <i < L2,

2 if w21 <i < [n/22,

etc.

void build-max-heap( T[] A)
n = A.length;
for (i=|n/2],[n2l-1,...1)
max-heapify( A, n, i)

Initially: A is an arbitrary array.
Upon return: A is a max-heap.

Note: Pass i through the loop
makes the subtree of 4 rooted at
A[i] into a max-heap.

Comparisons: at most 2n.

void sort-max-heap( T[] A)

n = A.length;
for (i=n,n-1,..,2)
swap( A[1], A[1]);

max-heapify( 4, i—1, 1);

Initially: A is a max-heap.
Upon return: A is a sorted array.

Note: Pass i through the loop
moves the /™ smallest element to
position Z, and then rebuilds
A[1..i-1] into a max-heap.

Comparisons. at most 2n 1g(n)

void heapsort( T[] A)
build-max-heap( A);
sort-max-heap( A);

Initially: A is an arbitrary array.
Upon return: A is sorted.

Comparisons: at most 2nlg(n) +
O(n)

Recall that our array 4 implicitly represents a nearly complete binary tree. The max-heap property holds
at A[p] provided A[p] > A[2p] and A[p] > A[2p+1] whenever 2p and 2p+1 are within bounds.




