
The Heapsort Algorithm

void max-heapify(T[] A, Integer n, Integer i)
 p = i;
 while (2p ≤ n)
 if (2p+1 ≤ n and A[2p+1] > A[2p])
 m = 2p+1;
 else
 m = 2p;
 if (A[p] < A[m])
 swap(A[p], A[m]);
 p = m;
 else
 return;

void build-max-heap(T[] A)
 n = A.length;

for (i = n/2, n/2–1, ..., 1)
 max-heapify(A, n, i)

void sort-max-heap(T[] A)
 n = A.length;

for (i = n, n–1, ..., 2)
 swap(A[1], A[i]);
 max-heapify(A, i–1, 1);

void heapsort(T[] A)
 build-max-heap(A);
 sort-max-heap(A);

Recall that our array A implicitly represents a nearly complete binary tree. The max-heap property holds
at A[p] provided A[p] ≥ A[2p] and A[p] ≥ A[2p+1] whenever 2p and 2p+1 are within bounds.

Initially: A is an array of size at
least n, and 1 ≤ i ≤ n. The max-
heap property holds everywhere
in the subtree of A[1..n] rooted at
A[i], except possibly at A[i]
itself.
Upon return: The subtree of
A[1..n] rooted at A[i] is a max-
heap. The rest of A is unchanged.
Comparisons: at most 2h, where
h is the height of the subtree.
This height is
 1 if n/22+1 ≤ i ≤ n/2,
 2 if n/23+1 ≤ i ≤ n/22,
 etc.

 

Initially: A is an arbitrary array.
Upon return: A is a max-heap.
Note: Pass i through the loop
makes the subtree of A rooted at
A[i] into a max-heap.
Comparisons: at most 2n.

Initially: A is a max-heap.
Upon return: A is a sorted array.
Note: Pass i through the loop
moves the ith smallest element to
position i, and then rebuilds
A[1..i–1] into a max-heap.
Comparisons: at most 2n lg(n)

Initially: A is an arbitrary array.
Upon return: A is sorted.
Comparisons: at most 2n lg(n) +

 O(n)

