Divide-and-Conquer Recurrences — The Master Theorem

We assume a divide and conquer algorithm in which a problem with input size *n* is always divided into *a* subproblems, each with input size n/b. Here *a* and *b* are integer constants with $a \ge 1$ and b > 1.

We assume *n* is a power of *b*, say $n = b^k$.

Otherwise at some stage we will not be able to divide the subproblem size exactly by b.

However, the Master Theorem still holds if *n* is not a power of *b*, and the subproblem input sizes are $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$

Note $k = \log_b(n)$.

The recurrence for the running time is:

T(n) = a T(n/b) + f(n), T(1) = d

Here f(n) represents the divide and combine time (i.e., the non-recursive time). f(n) may involve Θ , e.g., $f(n) = \Theta(n^2)$.

We define $E = \log_b(a)$.

E is called the **critical exponent**. (It strongly influences the solution.) By definition, $b^E = a$.

Note that $a^{k} = n^{E}$. *Why*? $a^{k} = (b^{E})^{k} = (b^{k})^{E} = n^{E}$. We can write down the total time to solve all sub-problems at a given depth in the recursion tree.

Depth of recursion	Size of sub- problems	Number of sub- problems	Total (non-recursive) time at this depth is roughly proportional to
0	п	1	f(n)
1	n/b	а	af(n/b)
2	n/b^2	a^2	$a^2f(n/b^2)$
3	n/b^3	a^3	$a^3f(n/b^3)$
<i>k</i> –2	n/b^{k-2}	a^{k-2}	$a^{k-2}f(n/b^{k-2})$
<i>k</i> –1	$n/b^{k-1} = b$	a^{k-1}	$a^{k-1}f(n/b^{k-1}) = \Theta(n^E)$
k	$n/b^k = 1$	$a^k = n^E$	$a^k d = \mathcal{O}(n^E)$

T(n) = sum of terms in rightmost column above $= f(n) + af(n/b) + a^2 f(n/b^2) + ... + a^{k-1} f(n/b^{k-1}) + a^k d$

The critical functions in determining T(n) are:

i)	f(n)	(the non-recursive time at depth 0)
----	------	-------------------------------------

ii) n^E (the non-recursive time at depth k, or k-1).

Clearly: $T(n) \ge \Theta(\max(n^E, f(n)))$.

On the other hand, if the terms in the right hand column of the table either increase as we move down, or decrease as we move down, then : $T(n) \le \Theta(\max(n^E, f(n)) \cdot \log_b(n)).$

We will see that, if one of n^E and f(n) grows <u>much</u> more rapidly than the other, then $T(n) \leq \Theta($ more rapidly growing function).

Master Theorem:

1) $f(n)$ in $O(n^{E-\varepsilon})$ for fixed $\varepsilon > 0$	implies	$T(n) = \Theta(n^E).$
2) $f(n)$ in $\Theta(n^E)$	implies	$T(n) = \Theta(n^E \log_b(n)).$
3) $f(n)$ in $\Omega(n^{E+\varepsilon})$ for fixed $\varepsilon > 0$	implies	$T(n) = \Theta(f(n)).$

Actually, (3) requires an additional hypothesis, that typically holds.

Note none of these cases may apply. For example, if $f(n) = n^E \log_b(n)$, we are between cases (2) and (3); neither case holds.