
Merging and Mergesort 

Merging:  Merging two (or more) lists means combining the lists, 
which must already be sorted, into a single sorted list. 

Merging is easier than sorting.  There is a very efficient algorithm 
for merging, illustrated below.  Arrays L and R are merged into A. 

L: 12 18 23 29    R: 14 17 22 31 33    
   i              j       L[i] ≤ R[j]; 
               A[k] = L[i];  
A:                                ++i;  ++k;  
    k 

L: 12 18 23 29    R: 14 17 22 31 33    
     i               j       L[i] > R[j]; 
               A[k] = R[j]; 
A: 12                             ++j;  ++k;  
       k 

L: 12 18 23 29    R: 14 17 22 31 33       
     i              j      L[i] > R[j]; 
               A[k] = R[j]; 
A: 12 14                         ++j;  ++k;  
          k 

L: 12 18 23 29    R: 14 17 22 31 33       
     i                j     L[i] ≤ R[j]; 
               A[k] = L[i];  
A: 12 14 17                      ++i;  ++k;  
             k 

L: 12 18 23 29    R: 14 17 22 31 33      
        i           j     L[i] > R[j]; 
               A[k] = R[j]; 
A: 12 14 17 18                   ++j;  ++k;  
                k 

L: 12 18 23 29    R: 14 17 22 31 33       
        i               j    L[i] ≤ R[j]; 
               A[k] = L[i];  
A: 12 14 17 18 22                ++i;  ++k;  
                   k 

L: 12 18 23 29    R: 14 17 22 31 33      
          i            j    L[i] ≤ R[j]; 
               A[k] = L[i]; 
A: 12 14 17 18 22 23             ++i;  ++k;  
                      k 

L: 12 18 23 29    R: 14 17 22 31 33    
             i                j    End of L. 
               Copy rest  
A: 12 14 17 18 22 23 29          of R to A. 
                         k 

L: 12 18 23 29   R: 14 17 22 31 33      
             i                j All done! 

A: 12 14 17 18 22 23 29 31 33 
                                k 

Unfortunately, this algorithm does not work in place.  (L and R cannot 
occupy the same memory as A.) 



Algorithm for Merging:  In our merging algorithm, we assume that 
the lists being merged occupy contiguous ranges within an array A, and 
the merged list is stored back to the union of these ranges.  That is, we 
merge A[p ..q] and A[q+1 ..r] to A[p ..r]. 

Input: An array A of element type T, where T has a strict weak 
ordering (denoted by <), and integers p, q, and r with p ≤ q ≤ r, 
such that A[p ..q] and A[q+1 ..r] are sorted. 

Output: The array A, with A[p ..r] sorted and the remaining elements 
unchanged. 

Algorithm: 

void merge( T[] A, Integer p, Integer q, Integer r) 
 L = temp array of size 1 ..q–p+1;   
 L[1 ..q–p+1] = A[p ..q]; 
 R = temp array of size 1 ..r–q;   
 R[1 ..r–q] = A[q+1 ..r]; 
 i = 1;  j = 1;  k = p;     // i, j, k = current positions in L, R, A. 
 while ( i ≤ q–p+1 and j ≤ r–q )  // Merge from L and R to A until  
  if ( L[i]  < R[j] )       //   one of L or R is exhausted. 
   A[k] = L[i]; 
   ++i;  ++k; 
  else 
   A[k] = R[j]; 
   ++j;  ++k; 
 while ( i ≤ q–p+1 )      // Copy remainder of L to A. 
  A[k] = L[i]; 
  ++i;  ++k; 
 while ( j ≤ r–q )       // Copy remainder of R to A 
  A[k] = R[j];                         
  ++j;  ++k; 

If it is feasible to place an extra element, with value ∞, at the end of L 
and R, we can shorten the algorithm a bit. 

Here ∞ need merely be greater than the largest possible element of L 
or R.  

Algorithm (alternate version): 

void merge2( T[] A, Integer p, Integer q, Integer r) 
 L = temp array of size 1 ..q–p+2;   
 L[1 ..q–p+1] = A[p ..q];   L[q–p+2] = ∞; 
 R = temp array of size 1 ..r–q+1;   
 R[1 ..r–q] = A[q+1 ..r];   R[r–q+1] = ∞; 

 i = 1;  j = 1;        // i, j, k = current positions in L, R, A. 
 for ( k = p, p+1, ..., r–1, r )   // Merge from L and R to A.  
  if ( L[i] < R[j]  )     
   A[k] = L[i]; 
   ++i;   
  else 
   A[k] = R[j]; 
   ++j;   

 

Analysis of merging: 

We consider two basic operations: 

 i) Comparisons of array elements.         C(n) = no of comparisons. 
 ii) Moves (copying) of array elements.   M(n) = no of moves.   

Here n = r–p+1  (the input size). 
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merge( ) performs n–1 comparisons in the worst case: 

     Cmax(n) = n–1 . 

merge( ) performs nearly n–1 comparisons in the expected case, if the 
two lists being merged have comparable size, and elements are 
randomly distributed between the lists:   

 Cave(n) ≈ n–1  under appropriate assumptions. 

merge( ) always performs 2n moves: 

     Mmax(n) = Mave(n) = 2n . 

merge2( ) performs n comparisons and 2n (or 2n+2) moves in all cases. 

Both merging algorithms run in linear time:  T(n) = Θ(n) in all cases. 

Other nice features of merging: 

 i) merge() accesses all arrays in forward sequential order.   

  a) This means that it can be adapted easily to merge singly or 
doubly linked lists. 

 ii) Our merging algorithms are stable, in the following sense: 

   If i < j and A[i] ∼ A[j], and if merge() moves A[i] to position i' 
and A[j] to position j', then i' < j'.  In other words, the relative 
order of equivalent elements is preserved. 

   A[i] ∼ A[j] might mean that structures A[i] and A[j] agree on 
their key field (used to sort), but possibly not on other fields. 

Mergesort:  Mergesort is a divide-and-conquer algorithm for sorting.  

To sort an array A[p ..r]  (a problem with input size n = r–p+1) using 
mergesort, we 

i) [Divide]   Divide into two subproblems by setting q = (p+r)/2 
and defining  

   Subproblem 1:  Sort A[p ..q]      (input size = n/2 ). 
   Subproblem 2:  Sort A[q+1 ..r]  (input size =  n/2 ). 

ii) [Solve subproblems]  Solve each subproblem by invoking 
mergesort recursively, unless the subproblem has size 1. 

iii) [Combine]   Merge the (now sorted) subarrays A[p ..q] and 
A[q+1 ..r] into a sorted array A[p ..r].  This may be done by 
invoking merge( A, p, q, r). 

However, if n = 1, we don’t divide into subproblems.  In fact, there is 
nothing to do; the array is already sorted. 
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Algorithm for Mergesort: 

Input: An array A of element type T, where T has a strict weak 
ordering (denoted by <), and integers p and r with p ≤ r.  

Output: The array A, with A[p ..r] sorted and the remaining elements 
unchanged. 

Algorithm: 

void mergesort( T[] A, Integer p, Integer r) 
if ( p < r ) 
 q = (p+r)/2; 
 mergesort( A, p, q); 
 mergesort( A, q+1, r); 
 merge( A, p, q, r); 

Analysis of Mergesort: 

We count the number C(n) of comparisons of elements of A.  Consider 
the worst case.

 If n = 1, no comparisons are required. 

 Otherwise: 
  Step (i) is trivial and uses no comparisons. 

  Step (ii) requires Cmax( n/2 ) + Cmax( n/2 ) comparisons, in the 
worse case 

  Step (iii) requires n–1 comparisons, in the worst case. 

 Cmax(1) = 0,   

 Cmax(n) = n–1 + Cmax( n/2 ) + Cmax( n/2 ),  if n > 1.    

We have derived a recurrence equation for Cmax(n). 

For any specific n, we can compute Cmax(n) explicitly. 
  

n Cmax(n) 
1   0 
2   2–1+C(1)+C(1) =   1 
3   3–1+C(2)+C(1) =   3 
4   4–1+C(2)+C(2) =   5 
5   5–1+C(3)+C(2) =   8 
6   6–1+C(3)+C(3) =   11 
7   7–1+C(4)+C(3) =   14 
8   8–1+C(4)+C(4) =   17 
9   9–1+C(5)+C(4) =   21 

10   10–1+C(5)+C(5) = 25 
11   11–1+C(6)+C(5) = 29 
12   12–1+C(6)+C(6) = 33 
13   13–1+C(7)+C(6) = 37 
14   14–1+C(7)+C(7) = 41 
15   15–1+C(8)+C(7) = 45 
16   16–1+C(8)+C(8) = 49 

This isn’t too useful!  It would be much nicer to obtain Cmax(n) as a 
simple function. 

 Unfortunately, we can’t do this because of the floors and ceilings in 
the recurrence Cmax(n) = n–1 + Cmax( n/2 ) + Cmax( n/2 ). 

 Even if n is even, at on some recursive call we are likely to have a 
list of odd size. 

 But if n is a power of 2, we can split the list exactly in half on every 
recursive call to mergesort(), and the recurrence simplifies to  

  Cmax(n) = n–1 + 2Cmax( n/2). 



We start by assuming that n is a power of 2, say n = 2k.  Then k = lg(n). 

Cmax(n) = n – 1 + 2Cmax(n/2)  

   = n – 1 + 2(n/2–1 + 2Cmax(n/22))   
   =  2n– (1+2) + 22Cmax(n/22) 
   =  2n– (1+2) + 22(n/22 –1+2Cmax(n/23))  
   =   3n– (1+2+22) + 23Cmax(n/23) 
    .     .     . 

    = kn– (1+2+22+...+2k–1) + 2kCmax(n/2k) 
    =  n lg(n) – (n–1) + 0        (since k = lg(n) and n/2k = 1)   
    = n lg(n) – n + 1 

So Cmax(n) = n lg(n) – n + 1 exactly, when n is a power of 2. 

What if n is not a power of 2?  Then, at some step, we cannot divide the 
list exactly in half.   But except for very small n, we divide it into two 
lists of nearly equal size (ratio of sizes very close to 1). 

We might expect the ratio of Cmax(n) to n lg(n) – n + 1 to be only 
slightly greater than 1.   

The handout Recurrences: Approximating n/2  and n/2  by n/2 
shows that this is correct, at least for n < 106. 

 Note, for example, that for 103 ≤ n < 104,  

n lg(n) – n + 1  ≤  Cmax(n)  <  1.0091(n lg(n) – n + 1) 

and that for larger n the approximation is even better. 

So we will use  Cmax(n) ≈  n lg(n) – n + 1  as our solution, in general. 

Cave(n) is only slightly less than Cmax(n). 


