Sorting Algorithms — Taking Advantage Many sorting algorithms don’t do this (or do it only to a small
of Order Present extent).

With quicksort (implemented in the simplest possible way),
something far more drastic occurs: An input “almost in order”
produces a worst or near-worst case.

When we analyze the expected running time of sorting a algorithm,
we generally assume

i) All array elements are inequivalent (all keys are distinct).

What does it mean for there to be “order present” in an array. To

In practice, this is often not the case. What happens then? make this precise, we need the concept of an inversion.

The algorithm probably works at least as well, but the

analysis becomes quite difficult. If A is an array of size n, an inversion of 4 is an ordered pair
(i,j) such that

i<j and A[i] > A[j] (1<i,j<n),
i.e., a pair that is out-of-order.

i) The array elements appear in “random” order. (Each of the
n! alternatives for the sorting permutation is equally likely.)

Again, this may well not be true. What if it fails? We

consider this below. 1 2 3 4 5 & Inversions of 4: (1,2), (1,5), (1,6),

3,4), (3,5), (3.,6),
4|27]12]45|31|23|25] E4,5;,§4,6§()

In some circumstances, the input to the sorting algorithm is likely to
be “almost in order”.

Perhaps we started with a sorted array, and performed a few Let /() denote the number of inversions of 4.

transactions that disturbed the order. Now we need to restore the Obviously 0 < I(A) < n(n-1)/2. (Only n(n—1)/2 pairs exist.)
array to sorted order. 1(4)=0 corresponds to 4 being in sorted order.
The array is not in sorted order, but it is scarcely random. There [(4)=n(n-1)/2 corresponds to A be.ing-in reverse order.
is a good deal of order present. Assumption (ii) above doesn’t apply. I(a)=n(n-1)/4 (expected) for 4 being in random order.
For example, the input might look like this: What does it mean for there to be order present in an array A?
112 25 17 22 29 43 34 39 45 49 58 53 63 68 79 82 87 77 91| A reasonable definition would be: I(4) << n(n-1)/4.
Ideally, a sorting algorithm would take advantage of order present,

: In particular, we are justified in calling an array almost in order
so that an array “almost in order” could be sorted faster than a if I(4) = O(n).

random array.

What does it mean for a sorting algorithm to take advantage of
order present?

No sorting algorithm can perform fewer than n—1 comparisons,
even if the input is exactly in sorted order. (Merely verifying that
the array is sorted requires n—1 comparisons.)

We are certainly justified in saying that a sorting algorithm takes
advantage of order present if the number of comparisons C(n) is
O(n + I(A)).

In particular, the running time is linear in 7 if the number of
inversions is linear.

Under this criterion, straight insertion sort qualifies:
C(n) =n—1+I(A).

Most other sorting algorithms don’t qualify under this strict
criterion, but some of them benefit, to a lesser extent, from order
present in the input.

Note (not specifically related to discussion of order present, above):

1) If A[i] > A[i+1], exchanging A[{] and A[i+1] removes exactly one
inversion from 4. (It removes inversion (7,i+1).)

ii) If A[i] > A[j], where j > i, exchanging A[i] and A[j] may remove as
many as 1 + 2(j—i—1) inversions from A. (This is an upper bound; it
may remove fewer.)

Implication: Any sorting algorithm that rearranges its input by exchanging
adjacent elements (e.g., bubble sort, straight insertion sort)
cannot have a worst-case running time better than @(n?).

This limitation doesn’t apply to algorithms that exchange
non-adjacent elements, e.g., quicksort and heapsort.

