
Prim’s Minimal Spanning Tree Algorithm 
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Prim’s Algorithm (Minimal Spanning Tree) 

Input:  A (undirected) weighted graph G = (V, E, W), that is 
connected.  We let n = |V| and e = |E|.   

Output:  A subset E' of E such that T = (V, E', W) is a minimal 
spanning tree for G.   

Algorithm:   Start with a single vertex.  Repeatedly choose the 
cheapest edge leading from a vertex already 
chosen to one not yet chosen.  Choose the new 
vertex to which this edge leads. 

Here is a crude implementation using Θ(n3) time. 

1. SetOfEdges  prim( WeightedGraph G) 
2.  Choose any vertex v; 
3.  V' = {v};  E' = φ;  
4.  while ( V' ⊂  V ) 
5.   Among all pairs (x,y) with x ∈  V–V' and y ∈  V', 
     choose (x,y) to minimize W(xy); 
6.   V' = V' ∪  {x};  E' = E' ∪ {xy}; 
7.  return E'; 

On the kth pass through the loop, |V'| = k in line 5, so  we are mini-
mizing over k(n–k) pairs.  This requires time about ck(n–k),  c 
constant.  Summing over k = 1,2,  ...,n, we obtain Θ(n3) total time 
for line 5, and for the algorithm. 

Here is a faster implementation using Θ(n2) time.  

An array near[] is used to avoid performing the same computa-
tions repeatedly in line 5 of the crude version.  For each vertex 
w of V–V', near[w] will hold the vertex in V' closest to w. 
 

1. SetOfEdges prim( WeightedGraph G) 
2.  Choose any vertex v; 
3.  V' = {v};  E' = φ; 
4.  for ( each vertex w in V–{v} ) 
5.   dist[w] = ∞; 
6.  for ( each vertex x adjacent to v ) 
7.   near[x] = v;  dist[x] = W(vx); 
8.  while ( V' ⊂  V ) 
9.   Choose a vertex x in V–V' to minimize dist[x];  
10.  V' = V' ∪  {x};  E' = E' ∪ {near[x] x }; 
11.  for ( each vertex y of V–V' adjacent to x ) 
12.   if ( W(xy) < W( near[y] y) ) 
13.    near[y] = x;  dist[y] = W(xy); 
14. return E'; 

Lines 4-5 require Θ(n) time.  Lines 6-7 combined with all passes 
over lines 11-13 traverse each adjacency list once, performing a 
constant amount of work for each entry, so the total time for these 
lines is Θ(e) with an adjacency list (Θ(n2) with an adjacency matrix).  
Line 9 uses Θ(n) time on each pass, or a total of Θ(n2).  The total 
running time is Θ(n2).  



Dijkstra’s Single Source Shortest Path Algorithm 

The problem:  Given a weighted graph or digraph G = (V,E,W), 
and a fixed vertex v, find the distances and shortest paths from v 
to every other vertex.  (We assume all weights are positive; 
short(v,w) denotes shortest path from v to w.) 

Idea: 

If v,x,y,z,w is the shortest path from v to w, then 
i) v,x,y,z is the shortest path from v to z, 
ii) dist(v,z) < dist(v,w), 
iii) dist(v,w) = dist(v,z) + W(zw). 

short(v,w) = short(v,z), w  
 

dist(v,w) = dist(v,z) + W(zw) 

Which vertex z?   Among all possible z, that which 
minimizes  dist(v,z) + W(zw).  

If we already know the k closest vertices to v, and their distances 
from v, the k+1st closest vertex may be found like this: 

T = { k closest vertices to v, including v itself (tree vertices)}, 
F = { vertices of V–T adjacent to vertex in T (fringe vertices)}.  

Choose z ∈  T and w ∈  F to so 

dist(v,z) + W(zw) = min{ dist(v,t) + W(tf) :  t ∈  T, f ∈  F}.  

v 
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z 
w 

fo r  so m e  v e rte x  z , a d ja c e n t to  w , 
w ith  d is t(v , z )  <  d is t(v ,w ) . 

Then  
w is the k+1st closest vertex to v, 
dist(v,w) = dist(v,z) + W(zw), 
short(v,w) = short(v,z),w 

A straightforward implementation would take Θ(n2) time to 
find a single pair (z,w) above, and hence Θ(n3) time to find the 
distance from v to all other vertices.   

But a technique very similar to that used to speed up Prim’s 
algorithm works here — and reduces the total time to Θ(n2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

t = tree 
vertex 

f = fringe 
vertex 

dist(v,t)  
+ W(tf ) 
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Minimum occurs for (H,G).  
Fifth closest vertex is G, and 
dist(A,G) = 25. 

Note:   dist(A,D) ≠ 41,  
  dist(A,I) ≠ 29. 
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