Prim’s Minimal Spanning Tree Algorithm

Sarting from

vert

edge

wit

A

vert

edge

wit

Prim’s Algorithm (Minimal Spanning Tree)

Input: A (undirected) weighted graph G = (V, E, W), that is
connected. Weletn=|V|and e= |E|.

Output: A subset E' of Esuchthat T = (V,E',W) isaminimal
spanning tree for G.

Algorithm: Start with asingle vertex. Repeatedly choose the
cheapest edge leading from a vertex already
chosen to one not yet chosen. Choose the new
vertex to which this edge leads.

Hereis a crude implementation using &(n°) time.

1. SetOfEdges prim(WeightedGraph G)

2. Choose any vertex v;

3. V'={v}; E=¢

4 while (V' UV)

5 Among al pairs (x,y) withx 0 V-V'andy 00 V',

choose (x,y) to minimize W(xy);

V'=V'O{x}; E =E O{xy};

7. return E';

o

On the k™ pass through the loop, [V'| =k inline 5, so we are mini-
mizing over k(n—K) pairs. Thisrequirestime about ck(n—k), ¢
constant. Summing over k = 1,2, ...,n, we obtain ©(n®) total time
for line 5, and for the algorithm.

Hereis afaster implementation using &(n?) time.

An array near[] isused to avoid performing the same computa-
tions repeatedly in line 5 of the crude version. For each vertex
w of V=V, near[w] will hold the vertex in V' closest to w.

1. SetOfEdges prim(WeightedGraph G)

2. Choose any vertex v;

3. V'={v}; E=¢

4. for (each vertex winV—{v})

5. dist[w] = oo;

6. for (each vertex x adjacent tov)

7. near[X] =v; dist[x] = WM(vx);

8. while (V' V)

9. Choose avertex x in V=V' to minimize dist[X];
10. V'=V'0{x}; E' =E O{near[x] x};

11. for (.each vertex y of V=V' adjacent to x)
12. if (W(xy) <W(near[y]y))

13, near[y] = x; distly] = W(xy);

14. return E';

Lines 4-5 require ©(n) time. Lines 6-7 combined with all passes
over lines 11-13 traverse each adjacency list once, performing a
constant amount of work for each entry, so the total time for these
linesis ©(e) with an adjacency list (©(n?) with an adjacency matrix).
Line 9 uses ©(n) time on each pass, or atotal of O(n?). The total
running time is ©(n°).

Dijkstra’s Single Source Shortest Path Algorithm Then

w isthe k+1% closest vertex to v,
The problem: Given aweighted graph or digraph G = (V,E,W), dist(v,w) = dist(v,2) + W(zw),
and afixed vertex v, find the distances and shortest paths from v short(v,w) = short(v,2),w

to every other vertex. (We assume all weights are positive; ’ w7

short(v,w) denotes shortest path from v to w.) A straightforward implementation would take ©(n®) time to

ldea: ° find asingle pair (zw) above, and hence ©(n®) timeto find the
' o a distance from v to al other vertices.

If v,x,y,z,w is the shortest path from v to w, then
1) V,XY,zisthe shortest path from v to z, Distances from

But atechnique very similar to that used to speed up Prim’'s
agorithm works here — and reduces the total time to ©(n?).

N : . tex A
i) dist(v,2) < dist(v,w), vertex t=tree| f=fringe | dist(v,t)
i) dist(v,w) = dist(v,2) + W(zw). vertex | vertex |+ W/(if)
B C 27
short(v,w) = short(v,2), w for some vertex z, adjacent to w, J c 26
dist(v,w) = dist(v,2) + W(zw) with dist(v,z) < dist(v,w). J D a1
J | 31
Which vertex 2?2 Among all possible z, that which
S . : H 2
minimizes dist(v,z) + W(zw). . ®) H CIS 2:
If we already know the k closest verticesto v, and their distances © Minimum occurs for (H,G).
from v, the k+1% closest vertex may be found like this: Fifth closest vertex is G: and
T={ kclosest verticesto v, including v itsdlf (tree vertices)}, ree dist(A,G) = 25.
F ={ verticesof V-T adjacent to vertex in T (fringe vertices)} . vertex Note: dist(A,D) # 41,
ChoosezO T and w [F to so \f/grqgi dist(A,1) # 29.

dist(v,2) + W(zw) = min{ dist(v,t) + W(tf) : tOT, fOF}.

