Quicksort — An Example

We sort the array
A=(3881224813 699314455879 72)

with quicksort, always choosing the pivot element to be the element
in position | (left+right)/2.

The partitioning during the top-level call to quicksort() is illustrated
on the next page. During the partitioning process,

1) Elements strictly to the left of position /o are less than or
equivalent to the pivot element (69).

ii) Elements strictly to the right of position /i are greater than
the pivot element.

When lo and hi cross, we are done. The final value of /i is the
position in which the partitioning element ends up.

An asterisk indicates an element compared to the pivot element at
that step.

Swap pivot element
with leftmost element.
lo=left+1; hi=right;

Move ki left and lo
right as far as we can;
then swap A[/lo] and
A[hi], and move hi and
lo one more position.

Repeat above

Repeat above until /i
and /o cross; then /i is
the final position of the
pivot element, so swap
Alhi] and A[left].

Partitioning complete;
return value of /i.

left

lefi+1 right

38

81|122)|48|13|69|93|14|45(58(79(72

lo hi < hi <hi

[69]81"
T

22]48[13[38]93]14 4558|7972
?

lo -l «vl0 w10 »l0O hi

[69] 58 |22

48"[13*[38%[93"[14 [45"

81[79]72|

hi
lo~~ lo

[69] 58 [22]48[13]|38]45(14™[93"|81[79]72]
f f

hi

[14]58]22]48[13[38]|45]69]|93]|81]79]72]

Number of comparisons performed by partition(): Here is the tree of recursive calls to quicksort. Calls to sort
a) No comparison for leftmost column. subarrays of size 0 or 1 are not shown. (They could be omitted.)

b) One comparison for each remaining column, except two for the
columns where 4i and /o end up. (lo = hi+1 at the end.)
C(n) = n + 1, where n is the size of the array (right — left +1). quicksort(4, 1, 12)
3881224813 699314455879 72

Expected number of exchanges performed by partition(), for a randomly 145822481338456993817972
ordered array, and a pivot element chosen from a designated position (and / \

hence a random element of the array).

he b 1 he k1 | - quicksort(A, 1,7) quicksort(4,9, 12)

Say t eplvot.eementtl_lrnsou‘fhtobe_‘F e k" largest element of the n 14 58 22 48 13 38 45 93 81 79 72

elements, so it ends up in the £~ position. — —
3845221413 48 58 79 72 81 93

Each exchange of A[lo] and A[hi] moves one element initially to the

right of &™ position, but less than (or equivalent but not equal to) the / \

pivot element, to a position not right of the ™ position. quicksort(4, 1, 5) quicksort(4, 9, 10)

Of the &1 elements in the array less than the pivot element, we would 14 45 22 3813 1972

expect ((n—k)/(n—1)) (k-1) of these to lie initially right of the ™ 14 13 22 38 45 72 179

position. Thus we expect (k—1)(n—k)/(n—1) = k(n—k)/n exchanges. / \

Since all values of k, | <k < n, are equally likely, the expected number quicksort(A, 1,2)| [quicksort(A, 4, 5)
of exchanges would be approximately 14 13 38 45

Ewe(n) = (1/n) X, k(n—k)/n 1314 38 45

= (Un?) (X kn =3, k)
(1/n*) (012 —n’/3)
E,.n) = nl/6

U

In other words, partition() performs only about 1 exchange for every 6
comparisons. An alternate version, designed specifically to work with
moves, performs about one move for each 3 comparisons.

partition() does an extremely good job of minimizing the movement of
elements. This is probably why quicksort tends to be faster than merge-
sort in the expected case, even though it performs move comparisons

The Quicksort Algorithm

(each interval partitioned using its middle element)

partition(A, left, right) rarranges A[left..right] and finds and returns an
integer ¢, such that

Alleft], ..., A[g—1] S pivot, A[q] = pivot, A[q+1], ..., A[right] > pivot,

where pivot is the middle element of a[/eft..right], before partitioning. (To
choose the pivot element differently, simply modify the assignment to m.)

Integer partition(T[] A, Integer left, Integer right)
m= |_left+righd /2;
swap(A[left], A[m]);
pivot = A left];
lo = left+1; hi = right,;
while (lo < hi)
while (A[hi] > pivot)
hi=hi-1;
while (/o < hi and A[lo] < pivot)
lo=1Io+1;
if (lo<hi)
swap(A[lo], A[hi]);
lo=lo+1; hi=hi—-1;
swap(Alleft], A[hi]);
return /i

quicksort(A, left, right) sorts A[left.. right] by using partition() to partition
Alleft .. right], and then calling itself recursively twice to sort the two subarrays.

void quicksort(T[] A, Integer left, Integer right)
if (left <right)
q = partition(A, left, right);
quicksort(A, left, g—1);
quicksort(A, g+1, right);

