Rate of Growth of Functions

(The special case in which lim,_,,, f(n) / g(n) exists)

Let g(n) be a fixed function.
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Rate of Growth of Functions
(The general case: lim,._,., f(n) / g(n) need not exist)

Let g(n) be a fixed function.
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Note that, in the general case, some function f(n) are in none of the
categories above.

For example, 1f

f(n) = g(n) tan*(n),
then f(n)/g(n) takes on both values arbitrarily close to 0, and
values arbitrarily large, as n increases. This implies

lim,_,,, f(n)/g(n)doesn’t exist, and neither of the constants c; or ¢,
exist.

Example: Here are various ways to write the approximation to
lg(n!) given by Stirling’s formula. Each line gives a more careful
approximation than the line above it.

lg(n!) = O(nlg(n))

lg(n!) = nlg(n) + o(nlg(n))

lg(n!) =nlg(n) + O(n)

lg(n!) = nlg(n) —lg(e)n + o(n)

lg(n!) = nlg(n) - lg(e)n + O(Ig(n))

lg(n!) =nlg(n) —lg(e)n + 0.51g(n) + o(lg(n))

lg(n!) =nlg(n) —lg(e)n + 0.51g(n) + O(1)

lg(n!) =nlg(n) —lg(e)n + 0.51g(n) + 0.51g(2n) + ©(1/n)



