
Examples of Iterative and Recursive Algorithms 

Fast Exponentiation 

Recursive   
Definition:  an = 

Problem: Given integers a, n, and m with n ≥ 0 and 0 ≤ a < m, 
compute an (mod m). 

Input:   Integers a, n, and m, with 0 ≤ n and 0 ≤ a < m. 

Output:    an (mod m) 

Algorithm (recursive): 

Integer fastExp( Integer a,  Integer n,  Integer m )  
  if ( n  ==  0 ) 
   return 1; 
  if ( n  ==  1 ) 
   return a; 
  x = fastExp( a, n /2 , m); 
  if ( even(n) ) 
   return  x2 (mod m); 
  else 
   return  x2a (mod m); 

1,      if n     = 0, 

(a n /2 )
2 

   if n > 0 and n is even, 

(a n /2 )
2
a  if n is odd. 

Greatest Common Divisor (Euclid’s Algorithm) 

Recursive   
Definition:  For a,b ≥ 0,  gcd(a,b) = 

Problem: Given nonnegative integers a and b, not both 0, compute 
gcd(a,b). 

Input:   Nonnegative integers a and b, not both zero. 

Output:    The greatest common divisor of a and b. 

Algorithm (recursive) 

Integer gcd( Integer a,  Integer b )  
  if ( b  ==  0 )  
   return a; 
  else 
   return gcd( b,  a mod b); 

Notes: 1) If b > a, the first recursive call effectively exchanges a 
and b. 

   2) In many applications, we need an extended version of 
Euclid’s algorithm, one that  also produces integers u and 
v such that ua+vb = gcd(a,b).  The algorithm below 
outputs a triple (d,u,v) such that d = gcd(a,b) and 
ua+vb = d 

TripleOfIntegers  ext_gcd( Integer a,  Integer b )  
  if ( b  ==  0 )  
   return (a, 1, 0); 
  else 
   (d,u,v) = ext_gcd(b, a mod b); 
   return (d, v, u–v a/b ); 

a        if b = 0, 
gcd( b, a mod b)   otherwise. 



Fibonacci Numbers 
Recursive 
definition:  F0 = 0,  F1 = 1,  Fi = Fi–1 + Fi–2 for i ≥ 2. 
Problem: Given a nonnegative integer n, compute Fn. 

Input:  A nonnegative integer n. 

Output:   The Fibonacci number Fn.   

Algorithm (recursive):  

Integer fibon( Integer n)  
  if ( n ≤ 1 ) 
   return  n ; 
  else 
   return  fibon (n–1) + fibon (n–2); 

Caution:  A C/C++ function or Java method based on this description 
will be hopelessly inefficient, unless n is very small.  If we attempt to 
compute F200 (a 41-digit number) using such a function, the program will 
not finish in the lifetime of the earth, even with a computer millions of 
times faster than present ones.  By contrast, with the iterative algorithm 
below, we can compute F200 easily in a tiny fraction of a second. 

Algorithm (alternate iterative description) 

Integer fibon( Integer n)  
  if ( n ≤ 1 ) 
   return  n ; 
  b = 0; 
  c = 1; 
  for ( i = 2,3, ...,n )     // c=Fi–1,  b=Fi–2,  a=Fi–3 (except when i=2). 
   a = b ; 
   b = c ; 
   c = b + a ;   // Now c=Fi,  b=Fi–1,  a=Fi–2. 
  return c; 

Rank Search 

Problem:  Find the kth smallest element of a set S. 

Input: A non-empty set S (distinct elements), a total ordering < on S, 
and an integer k with 1 ≤ k ≤ |S|. 

Output:  The k th smallest element of S.  (Numbering starts at 1; k = 1 
gives smallest.) 

Algorithm (recursive) 

Element rankSearch( Set S,  Integer k)  
  Choose an element p of S;   // A good strategy:  p = random elt of S.  
  S1 = ∅;  S2 = ∅; 
  for ( each element x of S–{p} ) 
   if ( x < p ) 
    S1 = S1 ∪ {x}; 
   else if ( x > p ) 
    S2 = S2 ∪ {x}; 
  // Now S = S1 ∪ {p} ∪ S2, each elt of S1 is < p, and each elt of S2 is > p.  
  if ( k ≤ |S1| ) 
   return rankSearch( S1, k); 
  else if ( k ≥ |S1|+2 ) 
   return rankSearch( S2,  k–1– |S1|); 
  else 
   return p; 

Notes:  1) This algorithm may be used to find the median of S. 

   2) The for-loop partitions S into S1, {p}, and S2.  Partitioning 
takes n–1 comparisons, where n = |S|.  If the elements of S are 
stored in an array of size n, there is a particularly efficient 
algorithm that performs the partitioning in place.  This same 
partitioning algorithm is used in quicksort. 

   3) This is probably the most efficient algorithm known for finding 
the kth smallest in the expected case, but it is rather slow in the 
worst case (to be discussed in class.) 



Height of a Binary Tree 

Recursive 
definition: For a binary tree t,   

    height(t) =  

Problem: Given a binary tree t, find its height. 

Input:   A binary tree t. 

Output:  An integer, the height of t.  (The empty tree has height –1; the 
tree whose left and right subtrees are empty has height 0.) 

Algorithm (recursive) 

Integer height( BinaryTree t)  
  if ( empty(t) ) 
   return  –1; 
  else 
   return 1 + max(height(leftSubtree(t)),  height( rightSubtree(t)) ); 

 

–1              if t is empty, 

1 + max( height( leftSubtree(t) ),  
         height( rightSubtree(t) ) ) otherwise. 


