
Sorting Algorithms — Stability

Let A be an array, and let < be a strict weak ordering on the elements
of A.

A sorting algorithm is stable if

 i < j and A[i] ∼ A[j] implies π (i) < π (j) .

where π is the sorting permutation (sorting moves A[i] to position π(i).)

Informally, stability means that equivalent elements retain their
relative positions, after sorting. (If the elements have class/structure
type and are ordered according to their value on one field — the key
field — then equivalent elements are elements with equal keys.)

Suppose we apply a sorting algorithm with this array as input, using
the state (NY, IL, etc) as the key.

New York NY
Chicago IL
Detroit MI
Buffalo NY
Milwaukee WI
Champaign IL

There are four correct outputs.

Chicago IL
Champaign IL
Detroit MI
New York NY
Buffalo NY
Milwaukee WI

 Champaign IL
Chicago IL
Detroit MI
New York NY
Buffalo NY
Milwaukee WI

 Chicago IL
Champaign IL
Detroit MI
Buffalo NY
New York NY
Milwaukee WI

 Champaign IL
Chicago IL
Detroit MI
Buffalo NY
New York NY
Milwaukee WI

But for a stable sorting algorithm, only the first output is correct.

implies

implies

In practice, we sometimes need a stable sorting algorithm.

We might need sort the array A above alphabetically by state, with
all cities in a single state appearing in alphabetical order.

Our sorting software might allow sorting on only one field at a time.

We may 1) First sort the array A alphabetically by city.

2) Then sort the array A alphabetically by state, using
a stable sorting algorithm.

Chicago IL
Champaign IL
Detroit MI
New York NY
Buffalo NY
Milwaukee WI
Albany NY
Green Bay WI
Syracuse NY
Rockford IL
Evanston IL

Sort
alpha-

betically
by city.

Albany NY
Buffalo NY
Champaign IL
Chicago IL
Detroit MI
Evanston IL
Green Bay WI
Milwaukee WI
New York NY
Rockford IL
Syracuse NY

Stable
sort

alpha-
betically
by state.

Champaign IL
Chicago IL
Evanston IL
Rockford IL
Detroit MI
Albany NY
Buffalo NY
New York NY
Syracuse NY
Green Bay WI
Milwaukee WI

New York NY
comes before
Buffalo NY

in the sorted array

New York NY
comes before
Buffalo NY

in the original array

Chicago IL
comes before
Champaign IL

in the sorted array

Chicago IL
comes before
Champaign IL

in the original array

Unfortunately, many of the (otherwise) best sorting algorithms are
not stable.

For example, quicksort and heapsort are not stable. (Mergesort
property implemented is stable.)

Any sorting algorithm may be made stable, at a price: The price is
Θ(n) extra space, and moderately increased running time (less than
doubled, most likely).

We have to (temporarily) append a sequence number to the key of
each element of the array. The sequence number serves as a tie-
breaker.

The C++ standard library provides a choice between a stable sorting
template function stable_sort(), and a (presumably faster) non-
stable sorting template function sort().

The Java library (class java.util.Arrays) provides static
methods for sorting objects, that are guaranteed to be stable.

Chicago IL
Champaign IL
Detroit MI
New York NY
Buffalo NY
Milwaukee WI
Albany NY
Green Bay WI
Syracuse NY
Rockford IL
Evanston IL

Temporarily
append

sequence
number to
key fields

Chicago IL01
Champaign IL02
Detroit MI03
New York NY04
Buffalo NY05
Milwaukee WI06
Albany NY07
Green Bay WI08
Syracuse NY09
Rockford IL10
Evanston IL11

Sorting this
array, with the
(modified) state
field as the key,
using any sorting
algorithm, pro-
duces a stable
sort of the origi-
nal array.

