
Straight Insertion Sort

Shaded section of array contains original elements in this section,
now rearranged in ascending order.

Boxed element is element to be inserted, so it becomes part of
shaded area at the next step.

Unshaded unboxed section of array contains the original elements,
completely untouched.

 = compare elements, and exchange them as they are out of order.

 = compare elements, and find them in order (no exchange).

 -∞ -∞ -∞ -∞ -∞ -∞ -∞
1 51 38 38 38 27 27 27

2 38 51 51 51 38 38 38

3 89 89 89 75 51 44 44
4 75 75 75 89 75 51 51
5 27 27 27 27 89 75 68
6 44 44 44 44 44 89 75
7 68 68 68 68 68 68 89

 i= 2 i= 3 i= 4 i= 5 i= 6 i= 7 done

Comparisons: n–1 comparisons in which the elements are in order.

 I(A) comparisons in which the elements are out of
order. (Each such comparison is followed by an
exchange that removes one inversion.)

 So C(n) = I(A) + n–1.

Exchanges: I(A)

Cmax(n) ≈ n2/2, Cave(n) ≈ n2/4, C(n) << n2/4 if there is order
present.

Tmax(n) = Θ(n2), Tave(n) = Θ(n2), T(n) is much less if there is
 order present.

Input: An array A with element type T, and integers p and r
with lowerbound(A) ≤ p ≤ r ≤ upperbound(A).

Output: The array A, with A[p..r] sorted, and any remaining
elements of A unchanged.

Algorithm (implemented using exchanges)

void straight_insertion_sort(T[] A, Integer p, Integer r)
 for (i = p+1, p+2, ..., r) // Insert A[i] into already
 j = i ; // sorted subarray A[p..i–1].
 while (j > p and A[j–1] > A[j])
 swap(A[j–1], A[j]);
 j = j–1;

Algorithm (implemented using moves)

void straight_insertion_sort(T[] A, Integer p, Integer r)
 for (i = p+1, p+2, ..., r) // Insert A[i] into already
 temp = A[i]; // sorted subarray A[p..i–1].
 j = i ;
 while (j > p and A[j–1] > A[j])
 A[j] = A[j–1];
 j = j–1;
 A[j] = temp;

