Exercise 2.3-1

\[
\begin{array}{cccc}
3 & 9 & 26 & 38 \\
26 & 41 & 52 & 49 \\
3 & 41 & 52 & 26 \\
3 & 41 & 52 & 26 \\
3 & 41 & 52 & 26 \\
\end{array}
\]

Exercise D.

C(0) = 0 = d·0, so the result holds when \(n = 0 \).

Let \(n \geq 1 \), and assume the result holds for all \(i \) with \(i < n \). \(C(n) = d + C(k) + C(n-1-k) \) where \(0 \leq k \leq n-1 \). Note \(n-k-1 \leq n-1 \). By the inductive hypothesis,

\[
C(n) = d + dk + d(n-k-1) = d(1 + k + (n-k-1)) = dn,
\]

so the result also holds for \(n \). By induction it holds for all nonnegative integers.

Exercise E.

Let \(L, M, \) and \(R \) be sorted arrays of length \(n/3 \) (possibly \(\lfloor n/3 \rfloor \) or \(\lceil n/3 \rceil \), so the sum of the lengths is \(n \)). For simplicity, assume \(n \) is a power of 3, so always \(L, M, \) and \(R \) have length \(n/3 \). Assume that each array has an extra element \(\infty \) at the end. We can merge \(L, M, \) and \(R \) into a single sorted array \(A \) of length \(n \) using the algorithm below. Here \(i, j, \) and \(k \) represent the positions of the current elements in \(L, M, \) and \(R \) respectively; and \(x \) represents the smallest element not yet merged from \(M \) or \(R \), provided \(xValid \) is true. As usual, indentation indicates nesting of blocks.
$i = 1; \; \; j = 1; \; \; k = 1;$
$xValid = \text{false};$
\begin{align*}
\text{for (} q = 1, 2, \ldots, n \text{)} \quad & \\
& \text{if (not } xValid \text{)} \\
& \quad \text{if (} M[j] \leq R[k] \text{)} \quad (\ast) \\
& \quad \quad x = M[j]; \\
& \quad \quad j = j + 1; \\
& \quad \text{else} \\
& \quad \quad x = R[k]; \\
& \quad \quad k = k + 1; \\
& \quad xValid = \text{true}; \\
& \text{if (} L[i] \leq x \text{)} \quad (\ast\ast) \\
& \quad A[q] = L[i]; \\
& \quad i = i + 1; \\
& \text{else} \\
& \quad A[q] = x; \\
& \quad xValid = \text{false};
\end{align*}

Comparisons are performed in the lines (\ast) and (\ast\ast). The comparison in line (\ast\ast) is performed on each pass through the loop — a total of n times. The comparison on line (\ast) is always performed on the first pass ($q = 1$). On the remaining passes, it is performed if the element merged to A on the previous pass came from M or R, but not if it came from L. Thus the total number of comparisons in line (\ast) is

\[n - (\text{number of elements merged from } L \text{ on the first } n-1 \text{ passes}) \]
\[= n - (n/3 \text{ or } n/3-1) \]
\[= 2/3 \; n \text{ or } 2/3 \; n + 1 \]

times. The total number of comparisons performed by the algorithm is $5/3 \; n$ or $5/3 \; n + 1$.

Exercise F.

$C(n) = 3C(n/3) + 5/3n$, $C(1) = 0$. We assume $n = 3^k$, so $k = \log_3(n)$.

\[
C(n) = 3C(n/3) + 5/3n \\
= 3(3C(n/3^2) + (5/3)(n/3)) + 5/3n \\
= 3^2C(n/3^2) + 2(5/3n) \\
= 3^2(3C(n/3^3) + (5/3)(n/3^2)) + 2(5/3n) \\
= 3^3C(n/3^3) + 3(5/3n) \\
\vdots \\
= 3^kC(n/3^k) + k(5/3n) \\
= nC(1) + 5/3 \; n \log_3(n) \\
= 5/3 \; n \log_3(n)
\]

The exact solution when n is a power of 3 is $C(n) = 5/3 \; n \log_3(n) \approx 1.052 \; n \lg(n)$.

By contrast, ordinary (2-way) mergesort uses approximately $n \lg(n)$ comparisons.
Exercise G In each part, we assume \(n = 2^k \), so \(k = \log(n) \).

a) \(C(n) = C(n/2) + 2n + 3 \)
 = \((C(n/2^2) + 2(n/2) + 3) + 2n + 3 \)
 = \(C(n/2^2) + 2n/2 + n + 2 \cdot 3 \)
 = \(C(n/2^3) + 2(n/2^2) + 3) + 2(n/2 + n) + 2 \cdot 3 \)
 = \(C(n/2^3) + 2(n/2^2 + n/2 + n) + 3 \cdot 3 \)

 .

 = \(C(n/2^k) + 2(n/2^k−1 + \ldots + n/2^2 + n/2 + n) + k \cdot 3 \)
 = \(C(1) + 2n(1/2^k−1 + \ldots + 1/2^2 + 1/2 + 1) + k \cdot 3 \)
 = \(1 + 2n(2−1/2^k−1) + 3 \log(n) \)
 = \(1 + 4n - 4 + 3 \log(n) \)
 (since \(n/2^k−1 = 2/2^k−1 = 2 \))
 = \(4n - 3 + 3 \log(n) \)

b) \(C(n) = 2C(n/2) + n \log(n) \)
 = \(2(2C(n/2^2) + n/2 \cdot \log(n/2)) + n \log(n) \)
 = \(2^2 C(n/2^2) + n(\log(n) - 1) + n \log(n) \)
 = \(2^2 C(n/2^2) + 2n \log(n) - n \)
 = \(2^3 (2C(n/2^3) + n^2 \cdot \log(n/2^2)) + 2n \log(n) - n \)
 = \(2^3 C(n/2^3) + n(\log(n) - 2) + 2n \log(n) - n \)
 = \(2^3 C(n/2^3) + 3n \log(n) - n(1+2) \)

 .

 = \(2^k C(n/2^k) + k n \log(n) - n(1+2+\ldots+k−1) \)
 = \(nC(1) + n(\log(n))^2 - nk(k−1)/2 \)
 = \(n(\log(n))^2 - n \log(n)(\log(n)−1)/2 \)
 = \(n(\log(n))^2/2 + n(\log(n))/2 \)

c) \(C(n) = 4C(n/2) + 3n^2 \)
 = \(4(4C(n/2^2) + 3(n/2)^2) + 3n^2 \)
 = \(4^2 C(n/2^2) + 4 \cdot 3(n/2)^2 + n^2 \)
 = \(4^2 C(n/2^2) + 3(2n^2) \)
 = \(4^2 (4C(n/2^3) + 3(n/2^2)^2) + 3(2n^2) \)
 = \(4^3 C(n/2^3) + 4^2 \cdot 3(n/2^2)^2 + 3(2n^2) \)
 = \(4^3 C(n/2^3) + 3(3n^2) \)

 .

 = \(4^k C(n/2^k) + 3(kn^2) \)
 following pattern on lines (*) (**) (***)
 = \(4^k C(1) + 3 \log(n)n^2 \)
 = \(4^k 0 + 3n^2 \log(n) = 3n^2 \log(n) \)