Exercise 2.3–1 (page 36).

D. Prove by induction on \(n \) that the recurrence
\[
C(n) = d + C(k) + C(n-k-1), \quad C(0) = 0,
\]
where \(d \) is a constant and \(0 \leq k \leq n-1 \), has solution \(C(n) = dn \).

E. Show how to merge three sorted arrays of length \(n/3 \) into a single sorted array of length \(n \) using approximately \(5/3n \) comparisons, in the worst case.

F. Consider 3-way mergesort, in which an array of size \(n \) is divided into three subarrays of equal size, and the three subarrays are sorted by recursive calls to 3-way mergesort. The recurrence for the number of comparisons becomes
\[
C(n) = 3C(n/3) + (5/3)n, \quad C(1) = 0,
\]
assuming \(n \) is a power of 3, say \(n = 3^k \). Find an exact solution to this recurrence, when \(n \) is a power of 3. (Your final solution should involve only \(n \), not \(k \).) How does the number of comparisons performed by 3-way mergesort compare to the number performed by ordinary mergesort?

G. Find a solution to each recurrence below that is exact when \(n \) is a power of 2, and a good approximation otherwise.

a) \(C(n) = C(n/2) + 2n + 3, \quad C(1) = 1 \).

b) \(C(n) = 2C(n/2) + n \log(n), \quad C(1) = 0 \).

c) \(C(n) = 4C(n/2) + 3n^2, \quad C(1) = 0 \).