
Study Guide for CS 401 / MCS 401 Final Exam — Spring 2008

1. Mathematics for analysis of algorithms

Logarithmic, polynomial, and exponential functions.

The factorial function and its logarithm, Stirling’s approximation to n! (n! (n/e)n sqrt(2n) ).

Binomial coefficients, probability of k successes in n independent trials.

Rate of growth of functions (O(g), (g), (g), o(g), (g)); using L’Hopital’s ruleto evaluate limits; relative
growth rates of logarithmic, polynomial, and exponential functions. (We say that exponentials dominate
polynomials, but you should know what this means. For example, 5sqrt(lg(n)) does not dominate n2.)

Determining change in the running time of an algorithm caused by change in the input size, given (T(n)).

Finding the running time of an algorithm, given pseudo-code. (For a recursive algorithm, you will obtain a
recurrence.) Worst case vs expected case.

Graphs and digraphs, data structures for representing (di)graphs, acyclic digraphs, sources and sinks, strongly
connected components of a digraph, source and sink components, the component digraph.

2. Important Algorithms
Fast exponentiation: You should understand how this algorithm improves upon the standard method of

exponentiation, and be able to illustrate how it may be used to compute an (mod m) for specific n.

Straight insertion sort, merge and mergesort, max-heapify and heapsort, partition and quicksort: You should
be familiar with the performance of each algorithm, and with its advantages and disadvantages (stability,
extra space required, ability to take advantage of order present.) You should be able to illustrate the
operation of partition and quicksort, and of max-heapify and heapsort. (I will not ask you to illustrate
the other sorting algorithms.)

Selecting the kth smallest in linear expected time. This algorithm also uses partition, and is similar to
partition. You should be able to illustrate the operation of this algorithm.

Polynomial multiplication in (n lg(n)) time using DFT and DFT 1. You should know that this algorithm
runs in (n lg(n)) time, versus (n2) time if we compute the product directly from the definition and
(n1.59) time using a simpler divide-and-conquer algorithm. You should know the general way in which
the (n lg(n)) time algorithm works. You should know how to evaluate a polynomial of degree bound n
(n = 2k) at the nth roots of unity by evaluating two polynomials of degree n/2 at the n/2 th roots of unity,
plus linear divide/combine time.

All pairs shortest paths: How the algorithm works, optimal substructure.

Prim’s and Kruskal’s minimal spanning tree algorithms: You should be familiar with the definition and
properties of an MST, as developed in the MST handout— especially the last theorem in the handout—
and be able to illustrate the construction of an MST byPrim’s or Kruskal’s algorithm.

Depth-first search (DFS) in (di)graphs: You should understand how this algorithm is based on a stack, and
be able to illustrate its operation on a digraph. You should understand the discover and finish times of a
vertex, and the relationship of these times to the classification of edges. You should also understand the
relation between edge types and strongly connected components.

Topological sort (application of DFS): You should understand what it means to topologically sort an acyclic
digraph, and be able illustrate the topological sort algorithm based on depth-first search.

Finding the strongly connected components of a digraph (application of DFS): You should understand how
the algorithm works, and be able to illustrate its operation.



To limit the number items you will need to study, I will NOT ask you any details of the following important
algorithms, which we went over in class:

Euclid's algorithm for finding the gcd
The simple(n1.59)-time divide-and-conquer algorithm for multiplying polynomials,
Finding the kth smallest in guaranteed linear time,
Optimal order for matrix multiplication,
Longest common subsequence,
Breadth-first search in digraphs,
String matching with finite automata.

3. Algorithm design techniques

Divide-and-conquer.

Obtaining recurrences for the number of basic operations, or running time (worst / expected cases).

Solving the recurrences that arise in divide-and-conquer algorithm (Master Theorem, substitution, trying
a solution containing some unknown constants, and showing that it works if the constants are chosen
appropriately).

When not to use divide-and-conquer: overlapping subproblems.

You should know the Master Theorem and how to apply it. You should be able to solve simple recurrences
(such as those on the quizzes) directly, without using the Master Theorem. I will not ask you about the
extended version of the Master Theorem developed in class.

Dynamic programming.

Choosing the subproblems, and the order of solving them.

Finding the optimal substructure, i.e., the equation expressing the (optimal) solution to a larger problem
in terms of the (optimal) solutions to smaller problems.

Designing a (usually non-recursive) algorithm based on optimal substructure.

Given the description of a suitable problem, you should (with some hints) be able to define the subproblems
and derive the optimal substructure.

Greedy method.
Examples where the greedy method works (Prim’s and Kruskal’s MST algorithms). Why the method

fails for most problems.

Algorithms based on depth-first search in graphs.

Recall this order is based on a stack. The elements on the stack, from bottom to top, are the vertices on a
path from a starting vertex to the current vertex

4. Lower Bounds
Lower bounds for comparison sorting algorithms; decision trees.


