All-Pairs Shortest Paths

Problem: G is a weighted graph or digraph with n vertices, which for simplicity we label simply 1, 2, ..., n.

We are given the adjacency matrix \(W = (w_{ij}) \),
\(w_{ij} \) = weight of edge from i to j (\(\infty \) if no such edge, 0 if \(i = j \)). All weights are positive.

Find the distance matrix \(D = (d_{ij}) \),
\(d_{ij} \) = distance from i to j.

Idea: For \(k = 0, 1, ..., n \) let

\(\text{short}_k(i, j) = \text{shortest path from } i \text{ to } j \text{ all of whose intermediate vertices lie in the set } \{1, 2, ..., k\} \).

\(d_{ij}^k = \text{length of } \text{short}_k(i, j) \).

\(k = 0: \) \(\text{short}_0(i, j) = \text{edge from } i \text{ to } j \).
\(d_{ij}^0 = w_{ij} \).

\(k = n: \) \(\text{short}_n(i, j) = \text{shortest path from } i \text{ to } j \).
\(d_{ij}^n = d_{ij} \).

Initially, we know all the \(d_{ij}^0 \).

Our goal is to find all the \(d_{ij}^n \).

How can we find all of the \(d_{ij}^k \), assuming we already know the \(d_{ij}^{k-1} \)?

Case 1: \(k \) is not an intermediate vertex on \(\text{short}_k(i, j) \).

\(\text{short}_k(i, j) = \text{short}_{k-1}(i, j) \)
\(d_{ij}^k = d_{ij}^{k-1} \).

Vertex k doesn’t help. (Always the case if \(k = i \) or \(k = j \).)

Case 2: \(k \) is an intermediate vertex on \(\text{short}_k(i, j) \).

\(\text{short}_k(i, j) = \text{short}_{k-1}(i, k) + \text{short}_{k-1}(k, j) \).
\(d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1} \).
Which case applies, case 1 or case 2?

Answer: Whichever minimizes d_{ij}^k.

$$d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$$

If we let

$$p_{ij}^k = \begin{cases}
 \text{true} & \text{if } d_{ik}^{k-1} + d_{kj}^{k-1} \text{ produces the minimum above,} \\
 \text{false} & \text{otherwise,}
\end{cases}$$

then

p_{ij}^k is true if and only if k is an intermediate point of $\text{short}_k(i,j)$.

Rather than compute all the p_{ij}^k, the algorithm below computes $p_{ij} = \text{largest } k \text{ for which } p_{ij}^k \text{ is true, or } 0 \text{ if } p_{ij}^k \text{ is false for all } k$.

Note

$p_{ij} = \text{the highest-numbered intermediate point on the shortest path from } i \text{ to } j, \text{ or } 0 \text{ if there are no intermediate points.}$

We can compute all the d_{ij}^k and p_{ij} in $\Theta(n^3)$ time by:

```plaintext
for (i = 1, 2, ..., n) for (j = 1, 2, ..., n) 
  d_{ij}^0 = w_{ij}; 
  p_{ij} = 0; 
for (k = 1, 2, ..., n) for (i = 1, 2, ..., n) for (j = 1, 2, ..., n) 
  if (d_{ik}^{k-1} + d_{kj}^{k-1} < d_{ij}^{k-1}) 
    d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}; 
    p_{ij} = k; 
  else 
    d_{ij}^k = d_{ij}^{k-1};
```

The matrix $D = (d_{ij}^n)$ is the distance matrix, and the matrix $P = (p_{ij})$ has the information needed to find the shortest path between any pair of points.
Using the matrix P, we may print the shortest path from i to j:

```plaintext
print(i);
print_intermediate_points(i, j);
print(j);

void print_intermediate_points(int i, int j)
    k = pij;
    if ( k > 0 )
        print_intermediate_points(i, k);
        print(k);
        print_intermediate_points(k, j);
    return;
```

Our algorithm for computing D and P uses $\Theta(n^3)$ space. We can reduce space (but not time) to $\Theta(n^2)$ by updating the d_{ij}^k in place.

Consider a single pass through the outer loop (fixed k).

d_{ij} doesn't change if $i=k$ or $j=k$, so there is no problem of using the new value of d_{ik} or d_{kj} when we need the old.

```plaintext
for ( i = 1,2,...,n )
    for ( j = 1,2,...,n )
        d_{ij} = w_{ij};
        pij = 0;
    for ( k = 1,2,...,n )
        for ( i = 1,2,...,n )
            for ( j = 1,2,...,n )
                if ( d_{ik} + d_{kj} < d_{ij} )
                    d_{ij} = d_{ik} + d_{kj};
                    pij = k;
```