Factorials

We define $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ if n is a nonnegative integer.

An empty product is normally defined to be 1.

With this convention, $0! = 1$.

An alternative is to define $n!$ recursively on the nonnegative integers.

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n(n-1)! & \text{if } n \geq 1. \end{cases}$$

As n increases, $n!$ increases very rapidly (exponentially).

<table>
<thead>
<tr>
<th>n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>3628800</td>
</tr>
<tr>
<td>15</td>
<td>1.307674×10^{12}</td>
</tr>
<tr>
<td>20</td>
<td>2.432902×10^{18}</td>
</tr>
<tr>
<td>30</td>
<td>2.652529×10^{32}</td>
</tr>
<tr>
<td>40</td>
<td>8.159153×10^{47}</td>
</tr>
<tr>
<td>50</td>
<td>3.041409×10^{64}</td>
</tr>
<tr>
<td>60</td>
<td>8.320987×10^{81}</td>
</tr>
<tr>
<td>70</td>
<td>1.197857×10^{100}</td>
</tr>
<tr>
<td>80</td>
<td>7.156946×10^{118}</td>
</tr>
</tbody>
</table>

For any fixed number a, $n! > a^n$ for all n sufficiently large.

On the other hand, $n! < n^n$ for all n.

Stirling’s Formula provides a good approximation to $n!$ in closed form:

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

If $S_0(n)$ denotes $\left(\frac{n}{e}\right)^n \sqrt{2\pi n}$, then $\lim_{n \to \infty} S_0(n) / n! = 1$.

In fact, the limit approaches 1 quite rapidly as n increases.

When $n = 5$, $S_0(n) / n! = 0.9835$.
When $n = 10$, $S_0(n) / n! = 0.9917$.
When $n = 50$, $S_0(n) / n! = 0.9983$.

An even better approximation is obtained by multiplying $S_0(n)$ by $1 + 1/(12n)$.

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + \frac{1}{12n}\right)$$

If $S_1(n)$ denotes $\left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + \frac{1}{12n}\right)$, then

When $n = 1$, $S_1(n) / n! = 0.998982$.
When $n = 5$, $S_1(n) / n! = 0.999883$.
When $n = 10$, $S_1(n) / n! = 0.999968$.
When $n = 50$, $S_1(n) / n! = 0.999999$.

Here are the approximations to $n!$ for the values of n in the previous table.
Previously, we mentioned that \(n! \) grows more rapidly than \(a^n \) (\(a \) fixed) but less rapidly than \(n^n \).

By Stirling’s formula, \(n! \) grows about as rapidly as \((n/e)^n\).

Stirling’s formula also gives a good approximation to \(\lg(n!) \):

\[
\lg(n!) \approx n \lg(n) - n \lg(e) + 0.5 \lg(2\pi) + \lg(e)/(12n)
\]

or

\[
\lg(n!) \approx n \lg(n) - 1.44n
\]

We sometimes write \(\lg(n!) \approx n \lg(n) \), but the 1.44\(n \) term never becomes negligible for practical values of \(n \).

Why is \(n! \) important in algorithms?

\(n! \) is the number of permutations of an \(n \)-element sequence with distinct elements. In other words, it is the number of ways to arrange \(n \) distinct objects.

For example, there are \(4! = 24 \) ways to arrange the letters a, b, c, d:

\[
\begin{align*}
&abcd \quad bacd \quad cbad \quad dabc \\
&abdc \quad bdac \quad cdab \quad dcab \\
&acbd \quad bcad \quad cbad \quad dbac \\
&acdb \quad bcda \quad cdab \quad dbca \\
&adbc \quad bdac \quad cdab \quad dcab \\
&adcb \quad bdca \quad cdab \quad dcba \\
\end{align*}
\]

Any algorithm that looks at every possible arrangement of \(n \) objects would take time at least proportional to \(n! \) (and thus be practical only for very small \(n \)— say \(n \) less than 15 or 20).

What if we have \(n \) elements that are not distinct? Say there are \(k \) distinct elements, occurring with frequencies \(n_1, n_2, \ldots, n_k \), where \(n_1 + n_2 + \ldots + n_k = n \). The number of arrangements is

\[
\frac{n!}{n_1! n_2! \ldots n_k!}
\]

Thus there are \(5! / (3! 1! 1!) = 20 \) ways to arrange a, a, a, b, c:

\[
\begin{align*}
aaabc & \quad aacab & \quad abca & \quad baaac & \quad caaab \\
aaacb & \quad aacba & \quad abca & \quad baaca & \quad caaba \\
ababc & \quad abaac & \quad abaca & \quad baca & \quad caba \\
abaca & \quad abaca & \quad acba & \quad baca & \quad caaa \\
\end{align*}
\]
We have defined $n!$ only on the nonnegative integers, but we can extend to the nonnegative real numbers (as well as certain negative real numbers).

Consider \[
\int_0^\infty t^x e^{-t} \, dt, \text{ where } x \text{ is any nonnegative real number.}
\]
(Actually, we only need $x > -1$.)

The value of the integral depends on x, so denote it by $g(x)$.

\[
\begin{align*}
g(0) &= \int_0^\infty t^0 e^{-t} \, dt = -e^{-t} \bigg|_0^\infty = -0 - (-1) = 1 \\
\int_0^\infty tx e^{-t} \, dt &= \int_0^\infty u(t) v'(t) \, dt \\
&= u(\infty)v(\infty) - u(0)v(0) - \int_0^\infty u'(t)v(t) \, dt \\
&= 0 - 0 - x \int_0^\infty t^{x-1}(-e^{-t}) \, dt \\
&= x \int_0^\infty t^{x-1} e^{-t} \, dt = xg(x-1).
\end{align*}
\]

Now $g(0) = 1$ and $g(x) = xg(x-1)$ for all $x > 0$ implies $g(x) = x!$ whenever x is a nonnegative integer. So it is natural to define

$$x! = \int_0^\infty t^x e^{-t} \, dt$$

for all nonnegative real numbers x.

Actually, this definition makes sense for $x > -1$. When $x = -1$, the integral diverges.

One can show that

\[
\begin{align*}
(1/2)! &= \sqrt{\pi}/2 \approx 0.8862 \\
(3/2)! &= (3/2)(1/2)! = 3\sqrt{\pi}/4 \approx 1.3293 \\
(5/2)! &= (5/2)(3/2)! = 15\sqrt{\pi}/8 \approx 3.3234 \\
(-1/2)! &= (1/2)! / (1/2) = \sqrt{\pi} = 1.7724
\end{align*}
\]

Note: The function we defined as $g(x)$ is essentially the Gamma function $\Gamma(x)$, introduced by Euler.

However, $\Gamma(x)$ is defined as $\int_0^\infty t^{x-1} e^{-t} \, dt$ whenever $x > 0$.

So $x! = \Gamma(x+1)$ whenever $x > -1$.
