The Heapsort Algorithm

void max-heapify(T[] A, Integer n, Integer i)
 p = i;
 while (2p ≤ n)
 m = 2p+1;
 else
 m = 2p;
 swap(A[p], A[m]);
 p = m;
 else
 return;
 void build-max-heap(T[] A)
 n = A.length;
 for (i = \lceil n/2 \rceil, \lceil n/2 \rceil – 1, ..., 1)
 max-heapify(A, n, i)
 void sort-max-heap(T[] A)
 n = A.length;
 for (i = n, n–1, ..., 2)
 swap(A[1], A[i]);
 max-heapify(A, i–1, 1);
 void heapsort(T[] A)
 build-max-heap(A);
 sort-max-heap(A);

Initially: A is an array of size at least n, and 1 ≤ i ≤ n. The max-heap property holds everywhere in the subtree of A[1..n] rooted at A[i], except possibly at A[i] itself.

Upon return: The subtree of A[1..n] rooted at A[i] is a max-heap. The rest of A is unchanged.

Comparisons: at most 2h, where h is the height of the subtree.
This height is
1 if \lceil n/2 \rceil+1 ≤ i ≤ \lceil n/2 \rceil,
2 if \lceil n/2 \rceil+1 ≤ i ≤ \lceil n/2 \rceil,