Heapsort

Phase 1: Transform arbitrary array to heap

Apply max-heapify()
to subtrees rooted at
88 and 18

Apply max-heapify()
to subtrees rooted at
37 and 54

Apply max-heapify ()
to subtree rooted
at 21

We now have a heap

Heapsort

Phase 2: Transform heap to sorted array

Exchange root with 54
last element

Exchange root with
last element

Exchange root with

last element

Exchange root with
last element

Five more exchanges, followed by calls to fixHeap(), complete
the transformation from a heap to a sorted array.

The Heapsort Algorithm

void max-heapify(T[] 4, Integer n, Integer i)
p=1i;
while (2p <n)
if (2p+1 <mn and A[2p+1]> A[2p])
m=2p+l1;
else
m=2p;
if (A[p] <A[m])
swap(A[p], A[m]);
p=m;
else
return;

Initially: A 1s an array of size at
least n, and 1 <i <n. The max-
heap property holds everywhere
in the subtree of A[1..n] rooted at
A[i], except possibly at A[7]
itself.

Upon return: The subtree of
A[1..n] rooted at A[i] is a max-
heap. The rest of 4 is unchanged.

Comparisons: at most 2h, where
h is the height of the subtree.
This height 1s

Lif w2’ k1 <i < L2,

2 if w21 <i < [n/22,

etc.

void build-max-heap(T[] A)
n = A.length;
for (i=|n/2],[n2l-1,...1)
max-heapify(A, n, i)

Initially: A is an arbitrary array.
Upon return: A is a max-heap.

Note: Pass i through the loop
makes the subtree of 4 rooted at
A[i] into a max-heap.

Comparisons: at most 2n.

void sort-max-heap(T[] A)

n = A.length;
for (i=n,n-1,..,2)
swap(A[1], A[1]);

max-heapify(4, i—1, 1);

Initially: A is a max-heap.
Upon return: A is a sorted array.

Note: Pass i through the loop
moves the /™ smallest element to
position Z, and then rebuilds
A[1..i-1] into a max-heap.

Comparisons. at most 2n 1g(n)

void heapsort(T[] A)
build-max-heap(A);
sort-max-heap(A);

Initially: A is an arbitrary array.
Upon return: A is sorted.

Comparisons: at most 2nlg(n) +
O(n)

Recall that our array 4 implicitly represents a nearly complete binary tree. The max-heap property holds
at A[p] provided A[p] > A[2p] and A[p] > A[2p+1] whenever 2p and 2p+1 are within bounds.

