
Nearly Complete Binary Trees and Heaps

DEFINITIONS:
i) The depth of a node p in a binary tree is the length

(number of edges) of the path from the root to p.

ii) The height (or depth) of a binary tree is the maxi-
mum depth of any node, or −1 if the tree is empty.

Any binary tree can have at most 2d nodes at depth d.
(Easy proof by induction)

DEFINITION: A complete binary tree of height h is a binary
tree which contains exactly 2d nodes at depth d, 0 ≤ d ≤ h.

• In this tree, every node at depth less than h has two
children. The nodes at depth h are the leaves.

• The relationship between n (the number of nodes)
and h (the height) is given by

n = 1 + 2 + 22 + ... + 2h−1 + 2h = 2h+1−1

and
 h = lg(n+1) −1.

• Complete binary trees are perfectly balanced and have
the maximum possible number of nodes, given their
height

• However, they exist only when n is one less than a
power of 2.

DEFINITION: A nearly complete binary tree of height h is a
binary tree of height h in which
 a) There are 2d nodes at depth d for d = 1,2, ...,h−1,
 b) The nodes at depth h are as far left as possible.

• Condition (b) can be stated more rigorously, like this:
If a node p at depth h−1 has a left child, then every
node at depth h−1 to the left of p has 2 children. If a
node at depth h−1 has a right child, then it also has a
left child.

• The relationship between the height and number of
nodes in a nearly complete binary tree is given by

2h ≤ n ≤ 2h+1−1, or h = ⎣ lg(n)⎦.

(This depends only on condition (a) in the definition.)

Examples:

Not nearly complete:
(a) fails.

Not nearly complete:
(b) fails.

Nearly complete.

Say we label the nodes of a nearly complete binary tree by
1, 2, 3, ..., n in order of increasing depth, and left-to-right at
a given depth.

Then, equating each node with its label,
 i) left(k) = 2k, if 2k ≤ n,
 ii) right(k) = 2k+1, if 2k+1 ≤ n,
 iii) parent(k) = ⎣k/2⎦ if k > 1.

iv) k has one or more children if 2k ≤ n. It has two
children if any only if 2k+1 ≤ n.

v) k is the left child of its parent if and only if k is
even.

Suppose each node in the tree contains an element from
some set. Denote the element in node p as element(p).

We don’t really need the tree structure (nodes with pointers
to the two children, and possibly the parent).

We can represent the tree implicitly by an array.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a J Q D B T Z G L C U A N F R H V I E W K M Y

The array contains all the information in the tree.

• In the tree, if p is the node containing T (node 5), then
parent(p) contains Q, left(p) contains U, and right(p)
contains A. (We examine the link fields in the node.)

• In the array representation, we compute ⎣5/2⎦ = 2,
2⋅5 = 10, and 2⋅5+1 == 11, and we find
parent(a[5]] = a[2] = Q, left(a[5]] = a[10] = U, and
right(a[5]) = a[11] = A.

U

MKWEV

C

B T

Q

N F R H

Z G

D

J

Y

A

I

L

3

4 5 6 7

8 9 10

2

1

1412 1311 15

22212019181716

42

27516198

22

59 71

75

2 12 29

48

52

81

56

69

45

50 35

39

It is useful to think in terms of the tree, but all
computation is actually performed with the array.

DEFINITION: A max-heap (or simply a heap) is a nearly
complete binary tree in which each node contains an ele-
ment from a set S with a strict weak ordering, such that:

For each node p except the root,
element(parent(p)) >~ element(p).

A min-heap is defined similarly except the heap
condition is element(parent(p)) <~ element(p).

Example of max-heap:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

81 75 52 59 71 39 48 50 22 42 69 35 2 12 29 8 45 19 16 5 27 56

Heap condition
at node p

42

27516198

22

59 71

75

2 12 29

48

52

81

56

69

45

50 35

39

73
p

q

Note in a max-heap:

 i) The largest element is in the root.
ii) The second largest element is in one of the

children of the root, but the third largest element
need not be in the other child.

With a heap, we can perform at least these operations
efficiently (time at worst Θ(lg(n)).

 1) Insert a new element.
 2) Find the largest element.
 3) Remove the largest element.

1) Insert a new element (say insert 73, in the heap above)

• There is only one place where we can insert a new
node, and still have a nearly complete binary tree.

•

In general, if the old size of the heap is n, the new
node becomes of child of node ⎣(n−1)/2⎦ — a
right child is n is even, and a left child if it is odd.

• The only place the heap property can possibly fail is
at the new node (node p).

• We compare the element in node p (73) with the
element in node parent(p) = q (69), and find that the
heap property does fail at node p.

• We correct the problem at p by exchanging the
elements in nodes p (73) and q (69).

• Now the only place the heap property can possibly
fail is at node q.

42

27516198

22

59 71

75

2 12 29

48

52

81

56

73

45

50 35

39

69

q

p

r

• We compare the element in node q (73) with the
element in node parent(q) = r (71), and find that the
heap property does fail at node q.

• We correct the problem by exchanging the
elements in nodes q and r.

• Now the only place the heap property can
possibly fail is at the parent of r (node s).

• We compare the element in node r (73) with the
element in node parent(r) = s (75), and find that the
heap property actually holds at node r.

• We are done.

• In the worst case, we would have compared the new
element with the elements in nodes q, r, s, and t.

42

27516198

22

59 73

75

2 12 29

48

52

81

56

71

45

50 35

39

69

q

p

r

s

t

• In general, the worst-case number of comparisons to
insert a new element is the depth of the new node.

• This is the height of a heap with n+1 elements, or
⎣lg(n+1)⎦.

• Thus: Cmax(n) = ⎣lg(n+1)⎦ ≈ lg(n),
 Tmax(n) = Θ(lg(n)).

• With the array representation, the algorithm to
insert a new element is:

// Insert a new element x into a heap of size n
// represented in an array A of size at least n+1.
max-heap-insert(A, n, x)
 n = n + 1;
 A[n] = x;
 while (n > 1 and A[n] > A[⎣n/2⎦])
 swap(A[n], A[⎣n/2⎦]);
 n = ⎣n/2⎦;

2) Find the largest element

• The largest element is in the root.

• Simply return the element in the root (constant
time)

3) Remove the largest element

• Let us remove the largest element from the heap

• The element to be removed (77) is in the root.
Removing it leaves the root empty.

• The only node we can delete from the tree, and still
have a nearly complete tree, is the last node (node
p).

• So we move the element in node p (32) to the root
(node q), and remove node p from the tree.

• We still have a nearly complete binary tree, and the
heap property can fail only at the children of the
root (nodes r and s).

29

275221924

41

67 31

72

2 7 47

51

55

77

32

25

8

28 35

45

p

q

• Given a nearly complete binary tree, in which the
heap property can fail only at the children of the
root, we can make the tree into a heap using a
procedure called max-heapify().

• Among the root and its two children (nodes q, r, s),
we find the largest element. (Two comparisons
will suffice.)

• In this case, the largest (72) occurs in node r.

• If the largest of these three elements were to occur in
the root (not the case here), we would be done.

• If the largest occurs in a child of the root (as happens
here, node r), we exchange the element in the root
with the element in this child.

29

275221924

41

67 31

72

2 7 47

51

55

32

25

8

28 35

45

heap property
could fail here

q

r s

• In our case, we exchange 32 and 72.

• This guarantees that the heap property holds at both
children of the root, but may cause it to fail at the
children of the node exchanged with the root (the
children of node r, in our case).

• We apply the same process recursively to the subtree
rooted at r, i.e., invoke max-heapify() recursively.

• The recursion terminates when we reach a leaf
node, if not sooner.

• The maximum number of calls to max-heapify()
is (height of heap) = ⎣lg(n)⎦

and the maximum number of comparisons is
2 ⎣lg(n)⎦.

29

275221924

41

67 31

32

2 7 47

51

55

72

25

8

28 35

45

heap property
must hold here

q

but could
fail here

r s

• With the array representation, we can write
max-heapify() like this.

// A is an array of size at least n, which we think of
// as a nearly complete binary tree. In the subtree
// of A[1..n] rooted at A[i] , the heap property
// holds everywhere except possibly at the children
// of A[i]. This function makes the subtree of
// A[1..n] rooted at A[i] into a heap.
max-heapify(A, i, n)
 largest = i;
 if (2i ≤ n and A[2i] > A[i])
 largest = 2i;
 if (2i+1 ≤ n and A[2i+1] > A[largest])
 largest = 2i+1;
 if (largest ≠ i)
 swap(A[i], A[largest])
 max-heapify(A, largest, n);

• We can also write max-heapify() non-recursively
like this:

max-heapify(A, i, n)
 while (2i ≤ n)
 largest = i;
 if (A[2i] > A[i])
 largest = 2i;
 if (2i+1 ≤ n and A[2i+1] > A[largest])
 largest = 2i+1;
 if (largest ≠ i)
 swap(A[i], A[largest])
 i = largest;
 else
 i = n+1;

Note: In addition to operations (1), (2), (3), we can
perform several other operations efficiently
(Θ(lg(n)) time).

• Increase or decrease the element in a known
position.

• Remove the element in a known position.

However, we can not efficiently

• Given x, decide if the heap contains an element
equal to x.

• Given k, find the kth largest element in the heap
(unless k is 1, or at least is very close to 1).

• Given x, remove x from the heap, if it is present.

