Prim’s Minimal Spanning Tree Algorithm

Starting from vertex A

<table>
<thead>
<tr>
<th>vert</th>
<th>edge</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Diagram

![Graph with vertex A highlighted]

Starting from vertex L

<table>
<thead>
<tr>
<th>vert</th>
<th>edge</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Diagram

![Graph with vertex L highlighted]
Prim’s Algorithm (Minimal Spanning Tree)

Input: A (undirected) weighted graph $G = (V, E, W)$, that is connected. We let $n = |V|$ and $e = |E|$.

Output: A subset E' of E such that $T = (V, E', W)$ is a minimal spanning tree for G.

Algorithm: Start with a single vertex. Repeatedly choose the cheapest edge leading from a vertex already chosen to one not yet chosen. Choose the new vertex to which this edge leads.

Here is a crude implementation using $\Theta(n^3)$ time.

1. SetOfEdges prim(WeightedGraph G)
2. Choose any vertex v;
3. $V' = \{v\}; \quad E' = \phi$;
4. while ($V' \subset V$)
5. Among all pairs (x,y) with $x \in V-V'$ and $y \in V'$, choose (x,y) to minimize $W(xy)$;
6. $V' = V' \cup \{x\}; \quad E' = E' \cup \{xy\}$;
7. return E';

On the kth pass through the loop, $|V| = k$ in line 5, so we are minimizing over $k(n-k)$ pairs. This requires time about $ck(n-k)$, c constant. Summing over $k = 1, 2, ..., n$, we obtain $\Theta(n^3)$ total time for line 5, and for the algorithm.

Here is a faster implementation using $\Theta(n^2)$ time.

An array $near[]$ is used to avoid performing the same computations repeatedly in line 5 of the crude version. For each vertex w of $V-V'$, $near[w]$ will hold the vertex in V' closest to w.

1. SetOfEdges prim(WeightedGraph G)
2. Choose any vertex v;
3. $V' = \{v\}; \quad E' = \phi$;
4. for (each vertex w in $V-\{v\}$)
5. $\quad dist[w] = \infty$;
6. for (each vertex x adjacent to v)
7. $\quad near[x] = v; \quad dist[x] = W(vx)$;
8. while ($V' \subset V$)
9. Choose a vertex x in $V-V'$ to minimize $dist[x]$;
10. $\quad V' = V' \cup \{x\}; \quad E' = E' \cup \{near[x] x\}$;
11. for (each vertex y of $V-V'$ adjacent to x)
12. \quad if ($W(xy) < W(near[y] y)$)
13. $\quad \quad near[y] = x; \quad dist[y] = W(xy)$;
14. return E';

Lines 4-5 require $\Theta(n)$ time. Lines 6-7 combined with all passes over lines 11-13 traverse each adjacency list once, performing a constant amount of work for each entry, so the total time for these lines is $\Theta(e)$ with an adjacency list ($\Theta(n^2)$ with an adjacency matrix). Line 9 uses $\Theta(n)$ time on each pass, or a total of $\Theta(n^2)$. The total running time is $\Theta(n^2)$.
Dijkstra’s Single Source Shortest Path Algorithm

The problem: Given a weighted graph or digraph \(G = (V,E,W) \), and a fixed vertex \(v \), find the distances and shortest paths from \(v \) to every other vertex. (We assume all weights are positive; \(short(v,w) \) denotes shortest path from \(v \) to \(w \).)

Idea: If \(v, x, y, z, w \) is the shortest path from \(v \) to \(w \), then

i) \(v, x, y, z \) is the shortest path from \(v \) to \(z \),

ii) \(dist(v,z) < dist(v,w) \),

iii) \(dist(v,w) = dist(v,z) + W(zw) \).

\(short(v,w) = short(v,z),w \)

\(dist(v,w) = dist(v,z) + W(zw) \)

Which vertex \(z \)? Among all possible \(z \), that which minimizes \(dist(v,z) + W(zw) \).

If we already know the \(k \) closest vertices to \(v \), and their distances from \(v \), the \(k+1 \) closest vertex may be found like this:

\(T = \{ k \) closest vertices to \(v \), including \(v \) itself (tree vertices)\}\\
\(F = \{ \) vertices of \(V-T \) adjacent to vertex in \(T \) (fringe vertices)\}.

Choose \(z \in T \) and \(w \in F \) to so

\(dist(v,z) + W(zw) = \min \{ \) dist(v,t) + W(tf) : \(t \in T, f \in F \} \).

Then

\(W \) is the \(k+1 \) closest vertex to \(v \),

\(dist(v,w) = dist(v,z) + W(zw) \),

\(short(v,w) = short(v,z),w \)

A straightforward implementation would take \(\Theta(n^2) \) time to find a single pair \((z,w)\) above, and hence \(\Theta(n^3) \) time to find the distance from \(v \) to all other vertices.

But a technique very similar to that used to speed up Prim’s algorithm works here — and reduces the total time to \(\Theta(n^2) \).

Distances from vertex A

<table>
<thead>
<tr>
<th>(t) = tree vertex</th>
<th>(f) = fringe vertex</th>
<th>(dist(v,t) + W(tf))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>(C)</td>
<td>27</td>
</tr>
<tr>
<td>(J)</td>
<td>(C)</td>
<td>26</td>
</tr>
<tr>
<td>(J)</td>
<td>(D)</td>
<td>41</td>
</tr>
<tr>
<td>(J)</td>
<td>(I)</td>
<td>31</td>
</tr>
<tr>
<td>(H)</td>
<td>(G)</td>
<td>25</td>
</tr>
<tr>
<td>(H)</td>
<td>(I)</td>
<td>29</td>
</tr>
</tbody>
</table>

Minimum occurs for \((H,G)\).

Fifth closest vertex is \(G \), and \(dist(A,G) = 25 \).

Note: \(dist(A,D) \neq 41 \), \(dist(A,I) \neq 29 \).