Examples of Iterative and Recursive Algorithms

Fast Exponentiation

Recursive Definition: \(a^n = \begin{cases} 1, & \text{if } n = 0, \\ (a^{\lfloor n/2 \rfloor}^2)^2 & \text{if } n > 0 \text{ and } n \text{ is even}, \\ (a^{\lfloor n/2 \rfloor}^2 a & \text{if } n \text{ is odd}. \\
\end{cases} \)

Problem: Given integers \(a, n, \) and \(m \) with \(n \geq 0 \) and \(0 \leq a < m \), compute \(a^n \mod m \).

Input: Integers \(a, n, \) and \(m \), with \(0 \leq n \) and \(0 \leq a < m \).

Output: \(a^n \mod m \)

Algorithm (recursive):

```java
Integer fastExp( Integer a, Integer n, Integer m )
if ( n == 0 )
   return 1;
if ( n == 1 )
   return a;
if ( even(n) )
   x = fastExp( a, \lfloor n/2 \rfloor, m );
   return x^2 \mod m;
else
   return x^2 a \mod m;
```

Greatest Common Divisor (Euclid’s Algorithm)

Recursive Definition: For \(a, b \geq 0 \), \(\gcd(a, b) = \begin{cases} a & \text{if } b = 0, \\ \gcd(b \mod a, a) & \text{otherwise}. \\
\end{cases} \)

Problem: Given nonnegative integers \(a \) and \(b \), not both 0, compute \(\gcd(a, b) \).

Input: Nonnegative integers \(a \) and \(b \), not both zero.

Output: The greatest common divisor of \(a \) and \(b \).

Algorithm (recursive)

```java
Integer gcd( Integer a, Integer b )
if ( b == 0 )
   return a;
else
   return gcd( b, a \mod b );
```

Notes: 1) If \(b > a \), the first recursive call effectively exchanges \(a \) and \(b \).

2) In many applications, we need an extended version of Euclid’s algorithm, one that also produces integers \(u \) and \(v \) such that \(ua + vb = \gcd(a, b) \). The algorithm below outputs a triple \((d, u, v)\) such that \(d = \gcd(a, b) \) and \(ua + vb = d \)

```java
TripleOfIntegers ext_gcd( Integer a, Integer b )
if ( b == 0 )
   return (a, 1, 0);
else
   (d, u, v) = ext_gcd(b, a \mod b );
   return (d, v, u - v \lfloor a/b \rfloor );
```
Fibonacci Numbers

Recursive definition:

$$ F_0 = 0, \ F_1 = 1, \ F_i = F_{i-1} + F_{i-2} \text{ for } i \geq 2. $$

Problem:
Given a nonnegative integer n, compute F_n.

Input: A nonnegative integer n.

Output: The Fibonacci number F_n.

Algorithm (recursive):

```plaintext
Integer fibon( Integer n)
    if ( n <= 1 )
        return n;
    else
        return fibon(n-1) + fibon(n-2);
```

Caution: A C/C++ function or Java method based on this description will be hopelessly inefficient, unless n is very small. If we attempt to compute F_{200} (a 41-digit number) using such a function, the program will not finish in the lifetime of the earth, even with a computer millions of times faster than present ones. By contrast, with the iterative algorithm below, we can compute F_{200} easily in a tiny fraction of a second.

Algorithm (alternate iterative description):

```plaintext
Integer fibon( Integer n)
    if ( n <= 1 )
        return n;
    b = 0;
    c = 1;
    for ( i = 2, 3, ..., n ) // c=F_{i-1}, b=F_{i-2}, a=F_{i-3} (except when i=2).
        a = b;
        b = c;
        c = b + a; // Now c=F_i, b=F_{i-1}, a=F_{i-2}.
    return c;
```

Rank Search

Problem: Find the k^{th} smallest element of a set S.

Input: A non-empty set S (distinct elements), a total ordering $<$ on S, and an integer k with $1 \leq k \leq |S|$.

Output: The k^{th} smallest element of S. (Numbering starts at 1; $k = 1$ gives smallest.)

Algorithm (recursive):

```plaintext
Element rankSearch( Set S, Integer k)
    Choose an element $p$ of $S$;  // A good strategy: $p$ = random elt of $S$.
    $S_1 = \emptyset$; $S_2 = \emptyset$;
    for ( each element $x$ of $S$–{$p$} )
        if ( $x < p$ )
            $S_1 = S_1 \cup \{x\}$;
        else if ( $x > p$ )
            $S_2 = S_2 \cup \{x\}$;
    // Now $S = S_1 \cup \{p\} \cup S_2$, each elt of $S_1$ is < $p$, and each elt of $S_2$ is > $p$.
    if ( $k \leq |S_1|$ )
        return rankSearch( $S_1$, $k$);
    else if ( $k \geq |S_1|+2$ )
        return rankSearch( $S_2$, $k$–1–$|S_1|$);
    else
        return $p$;
```

Notes:

1) This algorithm may be used to find the median of S.

2) The for-loop partitions S into S_1, {p}, and S_2. Partitioning takes n–1 comparisons, where $n = |S|$. If the elements of S are stored in an array of size n, there is a particularly efficient algorithm that performs the partitioning in place. This same partitioning algorithm is used in Quicksort.

3) This is probably the most efficient algorithm known for finding the k^{th} smallest in the expected case, but it is rather slow in the worst case (to be discussed in class.)
Height of a Binary Tree

Recursive definition: For a binary tree t,

$$\text{height}(t) = \begin{cases} -1 & \text{if } t \text{ is empty}, \\ 1 + \max(\text{height}(\text{leftSubtree}(t)), \text{height}(\text{rightSubtree}(t))) & \text{otherwise}. \end{cases}$$

Problem: Given a binary tree t, find its height.

Input: A binary tree t.

Output: An integer, the height of t. (The empty tree has height -1; the tree whose left and right subtrees are empty has height 0.)

Algorithm (recursive)

```plaintext
Integer height(BinaryTree t)
    if (empty(t))
        return -1;
    else
        return 1 + max(height(leftSubtree(t)), height(rightSubtree(t)));  
```