

Let *x* be an angle with $0 < x < \pi/2$. In right triangle CDB, the Theorem of Pythagoras tells us that

$$h^{2} = \sin^{2} x + (1 - \cos x)^{2} = \sin^{2} x + 1 - 2\cos x + \cos^{2} x = 2 - 2\cos x.$$

Note $h \le x$ (A straight line is shortest path between two points), so $h^2 \le x^2$, and hence $2 - 2\cos x \le x^2$. Thus

$$1 - \cos x \le x^2/2, \text{ or } (1)$$

$$\cos x \ge 1 - x^2/2. (2).$$

Although we assumed that x is small and positive, these inequalities are equally valid for negative x, since they involve only even functions.

Dividing (1) by *x*, and using the fact that $\cos x \le 1$, we obtain

$0 \le (1 - \cos x)/x \le x/2$	if $x > 0$,
$0 \ge (1 - \cos x)/x \ge x/2$	if $x < 0$.

These combine to give

 $|(1-\cos x)/x| \le |x|/2$ if $x \ne 0$.

Since $\lim_{x\to 0} \frac{x}{2} = 0$, $\lim_{x\to 0} \frac{(1 - \cos x)}{x} = 0$.

Again assume *x* is positive, and note

(Triangle ABC) \subseteq (shaded area) \subseteq (Triangle ABE). (3)

Triangle ABC has base 1 and height $\sin x$. Area = $1(\sin x)/2 = (\sin x)/2$. The shaded area is $x/2\pi$ of the unit circle. Area = $(x/2\pi)(\pi 1^2) = x/2$. Right triangle ABE has base 1 and height $\tan x$. Area = $(\tan x)/2$.

So $(\sin x)/2 \le x/2 \le (\tan x)/2$, and $\sin x \le x \le \tan x$.

From $\sin x \le x$, we obtain $\sin x/x \le 1$. From $x \le \tan x = \frac{\sin x}{\cos x}$, we multiply by $(\cos x)/x$ to obtain $\cos x \le \frac{\sin x}{x}$. In view of (2), we can substitute $1 - \frac{x^2}{2}$ to obtain

$$1 - x^2/2 \le \sin x/x \le 1$$
 (4)

We assumed $0 < x < \pi/2$. But since $1 - x^2/2$ and $\sin x/x$ are even functions, (4) holds when $0 > x > -\pi/2$ as well.

Let $f(x) = 1 - x^2/2$ and g(x) = 1. Then

 $f(x) \le \sin x / x \le g(x)$ and $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 1$,

 $\lim_{x\to 0} \sin x / x = 1.$