MCS 425 Midterm Exam Solutions - Spring 2008

1. [4 points] An affine cipher $E_{\alpha,\beta}(x) = \alpha x + \beta \pmod{26}$ encrypts plaintext **er** as ciphertext **J***, where * represents some ciphertext letter. Note the 26 letters correspond to the integers {0,1,...,25} as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	s	t	u	v	w	x	У	z

a) [3 points] What is *, i.e., what is the encryption of r?

From $\mathcal{E}_{\alpha,\beta}(\mathbf{e}) = \mathbf{J}$ and $\mathcal{E}_{\alpha,\beta}(\mathbf{r}) = \mathbf{*}$, we obtain $4\alpha + \beta \equiv 9 \pmod{26}$, $17\alpha + \beta \equiv \mathbf{*} \pmod{26}$.

Subtracting the first equation from the second gives

 $13\alpha \equiv \star -9 \pmod{26}$.

Since $gcd(\alpha, 26) = 1$, α must be odd, i.e., $\alpha \equiv 1 \pmod{2}$. It follows that $13\alpha \equiv 13 \pmod{26}$. Then $\star \equiv 9 + 13\alpha \equiv 9 + 13 \equiv 22$. Thus **r** is encrypted to **W**.

b) [1 points] Could the cipher described above encrypt b as C? Why or why not?

Yes, it could. To see this, we have to show that the simultaneous equations

 $4\alpha + \beta \equiv 9 \pmod{26},$ $17\alpha + \beta \equiv 22 \pmod{26},$

 $\alpha + \beta \equiv 2 \pmod{26},$

have a solution.

The second equation follows from the first, so we can ignore it. Subtracting the third equation from the first gives

 $3\alpha \equiv 7 \pmod{26}$.

Thus $\alpha \equiv 3^{-1}7 \equiv 9.7 \equiv 63 \equiv 11 \pmod{26}$. From the third equation,

 $\beta \equiv 2 - \alpha \equiv 2 - 11 \equiv -9 \equiv 17 \pmod{26}.$

Thus there is a solution, $\alpha \equiv 11 \pmod{26}$ and $\beta \equiv 17 \pmod{26}$.

2. [5 points] Use the fact that

 $903^2 \equiv 481^2 \pmod{36503}$

to produce a nontrivial factorization of 36503. Show your work, and use only methods applicable even with very large integers.

Note $903 \neq \pm 481 \pmod{36503}$, so by a major theorem proven in class, $36503 = gcd(36503, 903-481) \cdot gcd(36503, 903+481)$ provided that one (and hence both) of 481 and 903 are relatively prime to 36503. gcd(36503, 903-481) = gcd(36503, 422) is computed as follows: $36503 = 86 \cdot 422 + 211$ $422 = 2 \cdot 211 + 0$

So gcd(36503, 422) = 211. 36503/211 = 173, so $36503 = 211 \cdot 173$.

3. [6 points] In this problem, show all your work, and use only techniques that can be used even with very large integers.

a) [2 points] Show that one of 3 or 5 is a quadratic residue mod 23, and the other is a nonresidue.

(23-1)/2 = 11. *a* is a quadratic residue mod 23 if and only if $a^{11} \equiv 1 \pmod{23}$.

 $3^2 \equiv 9 \pmod{23}$ $5^2 \equiv 25 \equiv 2 \pmod{23}$ $3^{2^2} \equiv 9^2 \equiv 81 \equiv 12 \pmod{23}$ $5^{2^2} \equiv 2^2 \equiv 4 \pmod{23}$ $3^{2^3} \equiv 12^2 \equiv 144 \equiv 6 \pmod{23}$ $5^{2^3} \equiv 4^2 \equiv 16 \pmod{23}$ $3^{11} \equiv 3^{2^3} \cdot 3^2 \cdot 3 \equiv 6 \cdot 9 \cdot 3 \equiv 162 \equiv 1 \pmod{23}$ $5^{11} \equiv 5^{2^3} \cdot 5^2 \cdot 5 \equiv 16 \cdot 2 \cdot 5 \equiv 160 \equiv -1 \pmod{23}$ So 3 is a quadratic residue mod 23.So 5 is a non-residue mod 23.

b) [2 points] Compute the square roots of 3 or 5 (the one that is a residue) mod 23.

Since $23 \equiv 3 \pmod{4}$, and since we know that 3 is a quadratic residue mod 23, the square roots of 3 mod 23 must be $\pm 3^{(23+1)/4} = \pm 3^6$. Using the values of 3^2 and 3^{2^2} above, we compute $3^6 \equiv 3^{2^2} \cdot 3^2 \equiv 12 \cdot 9 \equiv 108 \equiv 16 \pmod{23}$. So the square roots of 3 mod 23 are ± 16 . (They may also be written as ± 7 .)

c) [2 points] Using only your result in part (a), and without performing any more computation, decide whether 15 is a quadratic residue mod 23.

We know that $(residue) \cdot (non-residue) = (non-residue)$. Since 3 is a residue mod 23 and 5 is a non-residue, 15 is a non-residue mod 23.

4. [5 points] Show how to compute $a^{75} \pmod{m}$ using only 9 modular multiplications. Show where each multiplication is used.

Note 75 = $(1001011)_2 = 2^6 + 2^3 + 2^1 + 2^0$									
$a_1 \equiv a^2 \pmod{m}$	$(a_1 \equiv a^{2^1})$								
$a_2 \equiv {a_1}^2 \pmod{m}$	$(a_2 \equiv a^{2^2})$								
$a_3 \equiv a_2^2 \pmod{m}$	$(a_3 \equiv a^{2^3})$								
$a_4 \equiv a_3^2 \pmod{m}$	$(a_4 \equiv a^{2^4})$	$\left(\right)$	6 multiplications						
$a_5 \equiv a_4^2 \pmod{m}$	$(a_5 \equiv a^{2^5})$								
$a_6 \equiv a_5^2 \pmod{m}$	$(a_6 \equiv a^{2^6})$	J							
$a^{75} \equiv a_6 a_3 a_1 a \pmod{m}$	$(a^{75} \equiv a^{2^6 + 2^3 + 2^1 + 2^0} \\ \equiv a^{2^6} a^{2^3} a^{2^1} a^{2^0})$	<pre>}</pre>	3 multiplications						

5. [5 points] In the circuit below,
a) [1.7 points] What is the output of the 5×4 S-box? 1101
b) [1.7 points] What is the output of the XOR-box? 1110
c) [1.6 points] What is the output of the 4×4 S-box? 0101

