MCS 425 Midterm Exam Solutions - Spring 2008

1. [4 points] An affine cipher $E_{\alpha, \beta}(x)=\alpha x+\beta(\bmod 26)$ encrypts plaintext er as ciphertext $J *$, where * represents some ciphertext letter. Note the 26 letters correspond to the integers $\{0,1, \ldots, 25\}$ as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{l}	\mathbf{m}	\mathbf{n}	\mathbf{o}	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}	\mathbf{t}	\mathbf{u}	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}

a) [3 points] What is *, i.e., what is the encryption of \boldsymbol{r} ?

From $E_{\alpha, \beta}(\mathbf{e})=\boldsymbol{J}$ and $E_{\alpha, \beta}(\mathbf{r})=\star$, we obtain

$$
4 \alpha+\beta \equiv 9(\bmod 26)
$$

$$
17 \alpha+\beta \equiv *(\bmod 26)
$$

Subtracting the first equation from the second gives

$$
13 \alpha \equiv \star-9(\bmod 26) .
$$

Since $\operatorname{gcd}(\alpha, 26)=1, \alpha$ must be odd, i.e., $\alpha \equiv 1(\bmod 2)$. It follows that $13 \alpha \equiv 13(\bmod 26)$. Then $* \equiv 9+13 \alpha \equiv 9+13 \equiv 22$. Thus \mathbf{r} is encrypted to W .
b) [1 points] Could the cipher described above encrypt b as C? Why or why not?

Yes, it could. To see this, we have to show that the simultaneous equations

$$
\begin{aligned}
& 4 \alpha+\beta \equiv 9(\bmod 26), \\
& 17 \alpha+\beta \equiv 22(\bmod 26), \\
& \alpha+\beta \equiv 2(\bmod 26),
\end{aligned}
$$

have a solution.
The second equation follows from the first, so we can ignore it. Subtracting the third equation from the first gives

$$
3 \alpha \equiv 7(\bmod 26)
$$

Thus $\alpha \equiv 3^{-1} 7 \equiv 9.7 \equiv 63 \equiv 11(\bmod 26)$. From the third equation,

$$
\beta \equiv 2-\alpha \equiv 2-11 \equiv-9 \equiv 17(\bmod 26) .
$$

Thus there is a solution, $\alpha \equiv 11(\bmod 26)$ and $\beta \equiv 17(\bmod 26)$.

2. [5 points] Use the fact that

$$
903^{2} \equiv 481^{2}(\bmod 36503)
$$

to produce a nontrivial factorization of 36503 . Show your work, and use only methods applicable even with very large integers.

Note $903 \not \equiv \pm 481(\bmod 36503)$, so by a major theorem proven in class,

$$
36503=\operatorname{gcd}(36503,903-481) \cdot \operatorname{gcd}(36503,903+481)
$$

provided that one (and hence both) of 481 and 903 are relatively prime to 36503.
$\operatorname{gcd}(36503,903-481)=\operatorname{gcd}(36503,422)$ is computed as follows:

$$
\begin{aligned}
36503 & =86 \cdot 422+211 \\
422 & =2 \cdot 211+0
\end{aligned}
$$

So $\operatorname{gcd}(36503,422)=211.36503 / 211=173$, so $\mathbf{3 6 5 0 3}=\mathbf{2 1 1} \cdot \mathbf{1 7 3}$.
3. [6 points] In this problem, show all your work, and use only techniques that can be used even with very large integers.
a) [2 points] Show that one of 3 or 5 is a quadratic residue $\bmod 23$, and the other is a nonresidue.
$(23-1) / 2=11$. a is a quadratic residue $\bmod 23$ if and only if $\mathrm{a}^{11} \equiv 1(\bmod 23)$.
$3^{2} \equiv 9(\bmod 23)$
$3^{2^{2}} \equiv 9^{2} \equiv 81 \equiv 12(\bmod 23)$
$3^{2^{3}} \equiv 12^{2} \equiv 144 \equiv 6(\bmod 23)$
$3^{11} \equiv 3^{2^{3}} \cdot 3^{2} \cdot 3 \equiv 6 \cdot 9 \cdot 3 \equiv 162 \equiv 1(\bmod 23)$
So 3 is a quadratic residue $\bmod 23$.

$$
\begin{aligned}
& 5^{2} \equiv 25 \equiv 2(\bmod 23) \\
& 5^{2^{2}} \equiv 2^{2} \equiv 4(\bmod 23) \\
& 5^{2^{3}} \equiv 4^{2} \equiv 16(\bmod 23) \\
& 5^{11} \equiv 5^{2^{3}} \cdot 5^{2} \cdot 5 \equiv 16 \cdot 2 \cdot 5 \equiv 160 \equiv-1(\bmod 23) \\
& \text { So } 5 \text { is a non-residue } \bmod 23 .
\end{aligned}
$$

b) [2 points] Compute the square roots of 3 or 5 (the one that is a residue) $\bmod 23$.

Since $23 \equiv 3(\bmod 4)$, and since we know that 3 is a quadratic residue \bmod 23 , the square roots of 3 mod 23 must be $\pm 3^{(23+1) / 4}= \pm 3^{6}$. Using the values of 3^{2} and $3^{2^{2}}$ above, we compute $3^{6} \equiv 3^{2^{2}} \cdot 3^{2} \equiv 12 \cdot 9 \equiv 108 \equiv 16(\bmod 23)$.
So the square roots of $3 \bmod 23$ are $\pm \mathbf{1 6}$. (They may also be written as ± 7.)
c) [2 points] Using only your result in part (a), and without performing any more computation, decide whether 15 is a quadratic residue mod 23.

We know that (residue) $\cdot($ non-residue $)=$ (non-residue). Since 3 is a residue $\bmod 23$ and 5 is a non-residue, 15 is a non-residue $\bmod 23$.
4. [5 points] Show how to compute $a^{75}(\bmod m)$ using only 9 modular multiplications. Show where each multiplication is used.

Note $75=(1001011)_{2}=2^{6}+2^{3}+2^{1}+2^{0}$

$$
\left.\begin{array}{ll}
a_{1} \equiv a^{2}(\bmod m) & \left(a_{1} \equiv a^{2^{1}}\right) \\
a_{2} \equiv a_{1}{ }^{2}(\bmod m) & \left(a_{2} \equiv a^{2^{2}}\right) \\
a_{3} \equiv a_{2}{ }^{2}(\bmod m) & \left(a_{3} \equiv a^{2^{3}}\right) \\
a_{4} \equiv a_{3}{ }^{2}(\bmod m) & \left(a_{4} \equiv a^{2^{4}}\right) \\
a_{5} \equiv a_{4}{ }^{2}(\bmod m) & \left(a_{5} \equiv a^{2^{5}}\right) \\
a_{6} \equiv a_{5}{ }^{2}(\bmod m) & \left(a_{6} \equiv a^{2^{6}}\right) \\
a^{75} \equiv a_{6} a_{3} a_{1} a(\bmod m) & \left(a^{75} \equiv a^{2^{6}+2^{3}+2^{1}+2^{0}}\right. \\
& \left.\equiv a^{2^{6}} a^{2^{3}} a^{2^{1}} a^{2^{0}}\right)
\end{array}\right\} 6 \text { multiplications }
$$

5. [5 points] In the circuit below,
a) [1.7 points] What is the output of the 5×4 S-box? \qquad
b) [1.7 points] What is the output of the XOR-box? \qquad
c) [1.6 points] What is the output of the 4×4 S-box? \qquad

