
The RSA Algorithm 

The RSA (Rivest-Shamir-Adleman algorithm) is the most 
important public-key cryptosystem. 

The RSA works because: 

If  n = pq, where p and q are large primes (several 
hundred digits), then 

 i)  Given p and q, we can easily multiply them to 
obtain n, but 

 ii)  Given n, there is no known way to factor n as pq in 
any reasonable amount of time. 

We also need these lemmas. 

Lemma 1. If n = p1p2 ...ph is a product of distinct primes, then 

    i)  ϕ(n) = (p1−1)(p2−1)...(ph −1),  and  

    ii)   pi −1divides ϕ(n) for all i. 

Proof:  We know in general that  

         ϕ(n) =  n (1−1/p1) (1−1/p2) ... (1−1/ph) 

          =  p1p2 ...ph (1−1/p1) (1−1/p2) ... (1−1/ph) 

          =  p1(1−1/p1) p2 (1−1/p2) ... ph (1−1/ph) 

          =  (p1−1)(p2−1)...(ph−1). 

     This proves (i), and (ii) follows immediately. 

Lemma 2:  If n = p1p2 ...ph is a product of distinct primes, then 

                  k ≡ 1 (mod ϕ(n))   ⇒   ak ≡ a (mod n) for any a. 

Proof:  It suffices to show that, for any a,   

         ak ≡ a  (mod pi)  for i = 1, 2, ..., h. 

     (If this holds,  pi divides ak − a for all i, so n must 
divide ak − a , showing that ak ≡ a  (mod n). 

     Consider each prime pi separately.   

       i) If a ≡ 0 (mod pi), then ak ≡ 0 ≡ a (mod pi). 

   ii) Otherwise Fermat’s Little Theorem tells us that 
api −1

 ≡ 1 (mod pi).  Since pi−1 divides ϕ(n), 
aϕ(n) ≡ 1 (mod pi).  So if k ≡ 1 (mod ϕ(n)), 
k = ϕ(n) t + 1 for some integer t, and 

       ak  ≡  aϕ(n) t+1 ≡  (aϕ(n) ) ta  ≡  a (mod pi). 

Note:   None of these results hold if the square of some prime 
divides n. 

     For example, if n = 12 = 223, then  

      ϕ(12)  = 4  ≠  (22−1)(3−1).    

      5  ≡ 1 (mod ϕ(12)),  but 25 = 32 ≡/   21 = 2 (mod 12). 



The RSA works like this: 

  i) Alice chooses two large primes pA and qA.  

 ii) Alice computes nA = pAqA and ϕ(nA) = (pA–1)( qA–1) 

 iii) Alice chooses an integer eA with gcd(eA,ϕ(nA)) = 1, 
possibly at random. 

 iv) Alice computes dA ≡ eA
−1 (mod ϕ(nA)). 

 v) Alice’s public key is (nA, eA).  She distributes this. 

Her private key is dA.  She keeps this secret. 

Alice can discard pA, qA, and ϕ(nA).  

vi) If 2k ≤ nA < 2k+1, Alice’s encryption function for short 
messages (k bits or less, so M < nA) is:   

   EA(M) = MeA (mod nA). 

 Anyone can compute EA(M).  A longer message is 
encrypted by splitting it into k-bit blocks, and 
encrypting each block separately.  Note that each 
encrypted block has k+1 bits. 

vii) Alice’s decryption function for short messages is:   

   DA(M) = MdA (mod nA), provided 0 ≤ M < nA.  

 No one except Alice (or someone else who has 
discovered Alice’s private key) can compute this. 

 Note:   DA (EA (M)) ≡ (M
eA)

 dA ≡ M
eA dA ≡ M (mod nA) 

since eAdA ≡ 1 (mod ϕ(nA)) 

Once Alice has done this, she can  

  1) receive encrypted messages from Bob (or anyone 
else), and 

  2) send digitally-signed messages to Bob (or anyone 
else). 

In order for Alice to send encrypted messages to Bob, or to 
receive digitally-signed messages from Bob, Bob will need to 
choose his own public and private keys, (nB, eB) and dB. 

Bob sends a short message M (at most k bits) to Alice like 
this: 

  i) Bob encrypts M as M
eA (mod nA), and sends M

eA to 
Alice.  (Note Bob knows eA and nA.) 

  ii) Alice decrypts M
eA as (M

eA) dA ≡ M (mod nA). Thus 
Alice recovers M.   
(Note Alice actually recovers the value of M (mod nA), 
but this equals M as long as M < nA.) 

For longer messages, Bob could break the message up into k-
bit blocks, and encrypt each block separately.  Alice would 
break the encrypted message in k+1 bit blocks, and decrypt 
each block separately.   

 



Example: 
 i) Alice chooses: pA = 59,  qA = 71. 

 ii) Alice computes: nA =  59⋅71 =  4189, 
       ϕ(nA) = (59−1) ⋅(71−1) =  4060.  

 iii) Alice chooses: eA = 671. 

 iv) Alice computes: dA ≡ eA
−1 (mod 4060) ≡ 1791. 

  She may do this using Euclid’s extended algorithm, 
which uses only O(log(nA)) steps, so is feasible even if 
nA has hundreds of digits. 

i q[i] r[i] x[i] y[i] 
-1  4060 1 0
0  671 0 1
1 6 34 1 -6
2 19 25 -19 115
3 1 9 20 -121
4 2 7 -59 357
5 1 2 79 -478
6 3 1 -296 1791
7 2 0  

 v) Alice distributes her public key (4189,671) and keeps 
her private key 1791 secret. 

vi) Alice’s encryption function is:  EA(M) ≡ M671 (mod 
4189), provided 0 ≤ M < 212−1 = 4095.   

 Alice’s decryption function is:  DA(M) ≡ M1791 (mod 
4189), provided 0 ≤ M < 4095. 

 Both functions can be computed using at most 
2log2(nA) modular multiplications, using fast 
exponentiation. 

  Bob sends Alice the message "RSA" as follows: 

 RSA  =  01010010  01010011  01000001  in ASCII. 

 Bob breaks this up into two 12-bit integers:   

  01010010  0101 0011  01000001, or 1317, 833 

 He computes  1317671 ≡ 3530,  833671 ≡ 3050  (mod 
4189). 

 The ciphertext is 3530, 3050, or 

 0110111001010 0101111101010. 

   (Note that 13-bit blocks were used, as M
671

 (mod 4189) 
could be greater than 4095.) 

Alice decrypts the message by computing 

  35301791 ≡ 1317,  30501791 ≡ 833 (mod 4189) 

giving plaintext 1317, 833, or  01010010  0101 0011  
01000001, or "RSA". 


