
The RSA Algorithm

The RSA (Rivest-Shamir-Adleman algorithm) is the most
important public-key cryptosystem.

The RSA works because:

If n = pq, where p and q are large primes (several
hundred digits), then

 i) Given p and q, we can easily multiply them to
obtain n, but

 ii) Given n, there is no known way to factor n as pq in
any reasonable amount of time.

We also need these lemmas.

Lemma 1. If n = p1p2 ...ph is a product of distinct primes, then

 i) ϕ(n) = (p1−1)(p2−1)...(ph −1), and

 ii) pi −1divides ϕ(n) for all i.

Proof: We know in general that

 ϕ(n) = n (1−1/p1) (1−1/p2) ... (1−1/ph)

 = p1p2 ...ph (1−1/p1) (1−1/p2) ... (1−1/ph)

 = p1(1−1/p1) p2 (1−1/p2) ... ph (1−1/ph)

 = (p1−1)(p2−1)...(ph−1).

 This proves (i), and (ii) follows immediately.

Lemma 2: If n = p1p2 ...ph is a product of distinct primes, then

 k ≡ 1 (mod ϕ(n)) ⇒ ak ≡ a (mod n) for any a.

Proof: It suffices to show that, for any a,

 ak ≡ a (mod pi) for i = 1, 2, ..., h.

 (If this holds, pi divides ak − a for all i, so n must
divide ak − a , showing that ak ≡ a (mod n).

 Consider each prime pi separately.

 i) If a ≡ 0 (mod pi), then ak ≡ 0 ≡ a (mod pi).

 ii) Otherwise Fermat’s Little Theorem tells us that
api −1

 ≡ 1 (mod pi). Since pi−1 divides ϕ(n),
aϕ(n) ≡ 1 (mod pi). So if k ≡ 1 (mod ϕ(n)),
k = ϕ(n) t + 1 for some integer t, and

 ak ≡ aϕ(n) t+1 ≡ (aϕ(n)) ta ≡ a (mod pi).

Note: None of these results hold if the square of some prime
divides n.

 For example, if n = 12 = 223, then

 ϕ(12) = 4 ≠ (22−1)(3−1).

 5 ≡ 1 (mod ϕ(12)), but 25 = 32 ≡/ 21 = 2 (mod 12).

The RSA works like this:

 i) Alice chooses two large primes pA and qA.

 ii) Alice computes nA = pAqA and ϕ(nA) = (pA–1)(qA–1)

 iii) Alice chooses an integer eA with gcd(eA,ϕ(nA)) = 1,
possibly at random.

 iv) Alice computes dA ≡ eA
−1 (mod ϕ(nA)).

 v) Alice’s public key is (nA, eA). She distributes this.

Her private key is dA. She keeps this secret.

Alice can discard pA, qA, and ϕ(nA).

vi) If 2k ≤ nA < 2k+1, Alice’s encryption function for short
messages (k bits or less, so M < nA) is:

 EA(M) = MeA (mod nA).

 Anyone can compute EA(M). A longer message is
encrypted by splitting it into k-bit blocks, and
encrypting each block separately. Note that each
encrypted block has k+1 bits.

vii) Alice’s decryption function for short messages is:

 DA(M) = MdA (mod nA), provided 0 ≤ M < nA.

 No one except Alice (or someone else who has
discovered Alice’s private key) can compute this.

 Note: DA (EA (M)) ≡ (M
eA)

 dA ≡ M
eA dA ≡ M (mod nA)

since eAdA ≡ 1 (mod ϕ(nA))

Once Alice has done this, she can

 1) receive encrypted messages from Bob (or anyone
else), and

 2) send digitally-signed messages to Bob (or anyone
else).

In order for Alice to send encrypted messages to Bob, or to
receive digitally-signed messages from Bob, Bob will need to
choose his own public and private keys, (nB, eB) and dB.

Bob sends a short message M (at most k bits) to Alice like
this:

 i) Bob encrypts M as M
eA (mod nA), and sends M

eA to
Alice. (Note Bob knows eA and nA.)

 ii) Alice decrypts M
eA as (M

eA) dA ≡ M (mod nA). Thus
Alice recovers M.
(Note Alice actually recovers the value of M (mod nA),
but this equals M as long as M < nA.)

For longer messages, Bob could break the message up into k-
bit blocks, and encrypt each block separately. Alice would
break the encrypted message in k+1 bit blocks, and decrypt
each block separately.

Example:
 i) Alice chooses: pA = 59, qA = 71.

 ii) Alice computes: nA = 59⋅71 = 4189,
 ϕ(nA) = (59−1) ⋅(71−1) = 4060.

 iii) Alice chooses: eA = 671.

 iv) Alice computes: dA ≡ eA
−1 (mod 4060) ≡ 1791.

 She may do this using Euclid’s extended algorithm,
which uses only O(log(nA)) steps, so is feasible even if
nA has hundreds of digits.

i q[i] r[i] x[i] y[i]
-1 4060 1 0
0 671 0 1
1 6 34 1 -6
2 19 25 -19 115
3 1 9 20 -121
4 2 7 -59 357
5 1 2 79 -478
6 3 1 -296 1791
7 2 0

 v) Alice distributes her public key (4189,671) and keeps
her private key 1791 secret.

vi) Alice’s encryption function is: EA(M) ≡ M671 (mod
4189), provided 0 ≤ M < 212−1 = 4095.

 Alice’s decryption function is: DA(M) ≡ M1791 (mod
4189), provided 0 ≤ M < 4095.

 Both functions can be computed using at most
2log2(nA) modular multiplications, using fast
exponentiation.

 Bob sends Alice the message "RSA" as follows:

 RSA = 01010010 01010011 01000001 in ASCII.

 Bob breaks this up into two 12-bit integers:

 01010010 0101 0011 01000001, or 1317, 833

 He computes 1317671 ≡ 3530, 833671 ≡ 3050 (mod
4189).

 The ciphertext is 3530, 3050, or

 0110111001010 0101111101010.

 (Note that 13-bit blocks were used, as M
671

 (mod 4189)
could be greater than 4095.)

Alice decrypts the message by computing

 35301791 ≡ 1317, 30501791 ≡ 833 (mod 4189)

giving plaintext 1317, 833, or 01010010 0101 0011
01000001, or "RSA".

