
The ElGamal Public Key Encryption Algorithm 

The ElGamal Algorithm provides an alternative to the RSA 
for public key encryption. 

1) Security of the RSA depends on the (presumed) 
difficulty of factoring large integers. 

2) Security of the ElGamal algorithm depends on the 
(presumed) difficulty of computing discrete logs in a 
large prime modulus. 

ElGamal has the disadvantage that the ciphertext is twice as 
long as the plaintext. 

It has the advantage the same plaintext gives a different 
ciphertext (with near certainty) each time it is encrypted.  

Alice chooses 
i)   A large prime pA (say 200 to 300 digits), 

ii)   A primitive element αA modulo pA, 

iii)  A (possibly random) integer dA with 2 ≤ dA ≤ pA –2. 

Alice computes 

 iv)   βA ≡ αA
 dA  (mod pA). 

Alice’s public key is (pA, αA, βA).   Her private key is dA. 

Bob encrypts a short message M (M < pA) and sends it to 
Alice like this: 

i) Bob chooses a random integer k (which he keeps 
secret). 

ii) Bob computes  r ≡ αA
k (mod pA)  and  t ≡ βA

kM (mod 
pA), and then discards k.   

Bob sends his encrypted message (r, t) to Alice. 

When Alice receives the encrypted message (r, t), she 
decrypts (using her private key dA) by computing  t r−dA. 

Note    t r−dA  ≡  βA
k M (αA

k )−dA             (mod pA) 

≡  (αA
 dA)k M (αA

k )−dA     (mod pA) 

≡   M         (mod pA) 

Even if Eve intercepts the ciphertext (r, t), she cannot 
perform the calculation above because she doesn’t know dA.   

 βA ≡ αA
 dA   (mod pA),  so   dA ≡ LαA(βA)  

Eve can find dA if she can compute a discrete log in the large 
prime modulus pA, presumably a computation that is too 
difficult to be practical. 

Caution:  Bob should choose a different random integer k 
for each message he sends to Alice.   



If M is a longer message, so it is divided into blocks, he 
should choose a different k for each block.   

Say he encrypts two messages (or blocks) M1 and M2, using 
the same k, producing ciphertexts 

   (r1, t1) = (αA
k, βA

kM1),     (r2, t2) =  (αA
k, βA

kM2). 

Then  t2 t1
−1 ≡  M2M1

−1 (mod p),  M2  ≡  t2 t1
−1M1  (mod p).  If 

Eve intercepts both ciphertext messages and discovers one 
plaintext message M1, she can compute the other plaintext 
message M2.   

Example:  Alice chooses pA = 107, αA = 2, dA = 67, and she 
computes βA = 267 ≡ 94 (mod 107).  Her public key is 
( pA, αA, βA) = (2,67,94), and her private key is dA = 67. 

Bob wants to send the message "B" (66 in ASCII) to Alice.  
He chooses a random integer k = 45 and encrypts M = 66 as 
(r, t) = (αA

k, βA
kM) ≡ (245, 944566) ≡ (28, 9)  (mod 107).  He 

sends the encrypted message (28, 9) to Alice. 

Alice receives the message (r, t) = (28, 9), and using her 
private key dA = 67 she decrypts to  

   t r−dA = 9 ⋅28−67 ≡ 9 ⋅28106−67 ≡ 9 ⋅43 ≡ 66  (mod 107).  


