The field GF(8)

$\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{x}^{3}+\mathbf{x}+\mathbf{1}$ is an irreducible polynomial in $\mathrm{Z}_{2}[\mathrm{x}]$.
The eight polynomials of degree less than 3 in $Z_{2}[x]$ form a field with 8 elements, usually called GF(8).

In GF(8), we multiply two elements by multiplying the polynomials and then reducing the product modulo $\mathbf{p}(\mathbf{x})$.

product mod $\boldsymbol{p}(\boldsymbol{x})$	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{x}	$\boldsymbol{x}+\mathbf{1}$	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{2}+\mathbf{1}$	$\boldsymbol{x}^{2}+\boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
\boldsymbol{x}	0	x	x^{2}	$x^{2}+x$	$x+1$	1	$x^{2}+x+1$	$x^{2}+1$
$\boldsymbol{x}+\mathbf{1}$	0	$x+1$	$x^{2}+x$	$x^{2}+1$	$x^{2}+x+1$	x^{2}	1	x
$\boldsymbol{x}^{\mathbf{2}}$	0	x^{2}	$x+1$	$x^{2}+x+1$	$x^{2}+x$	x	$x^{2}+1$	1
$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{1}}$	0	$x^{2}+1$	1	x^{2}	x	$x^{2}+x+1$	$x+1$	$x^{2}+x$
$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}}$	0	$x^{2}+x$	$x^{2}+x+1$	1	$x^{2}+1$	$x+1$	x	x^{2}
$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$	0	$x^{2}+x+1$	$x^{2}+1$	x	1	$x^{2}+x$	x^{2}	$x+1$

