
Examples of Syndrome Decoding

Ex 1 Let C1 be linear binary [6,3,3] code with generator matrix

 1 0 0 0 1 1
G = 0 1 0 1 0 1
 0 0 1 1 1 0

and parity check matrix

 0 1 1 1 0 0
H = 1 0 1 0 1 0
 1 1 0 0 0 1

The syndromes and coset leaders are:

 0 = (0,0,0,0,0,0),
 e1= (1,0,0,0,0,0),

 e6= (0,0,0,0,0,1),

Say we receive the vector v = (1 1 1 1 0 1).

We know v = c + e, where c is the codeword transmitted, and e is
the error vector.

eHT = (v - c)HT = vHT - cHT = vHT - 0 = vHT = (101).

The table tells us that e (and v) are in the coset with leader e2.
Under nearest-neighbor decoding, we want wt(e) to be as small as
possible, so we assume e = e2.

Syndrome Coset Leader(s)
0 0 0 0
0 0 1 e6
0 1 0 e5
0 1 1 e1
1 0 0 e4
1 0 1 e2
1 1 0 e3
1 1 1 e1+e4, e2+e5, e3+e6

So c = v – e2 = (1 1 1 1 0 1) - (0 1 0 0 0 0) = (101101).

The original message was simply the information symbols in c (the
first three positions), or 101.

Say we receive the vector v = c + e = (1 0 0 1 0 0).

We compute vHT = (111), and e is in the coset of e1+e4. But there
are three equally likely alternatives for the error vector. We have
detected errors (probably two errors), but we cannot correct them.

Note we can always correct one error in a block, and occasionally
we can detect two errors.

There are C(6,2) = 15 ways in which two errors can occur.
For 3 of these ways, and can detect (but not correct) the errors.
For the other 12, we compute e and c incorrectly (although in
3 of them, only the parity-check positions are affected).

Ex 2 Let C2 be linear binary [7,2,4] code with generator matrix
 1 0 1 1 1 0 1

 0 1 1 1 1 1 0
and parity check matrix

 1 1 1 0 0 0 0
 1 1 0 1 0 0 0
H = 1 1 0 0 1 0 0

0 1 0 0 0 1 0
1 0 0 0 0 0 1

The syndromes and coset leaders are

G =

Syndrome Coset Leader(s)
0 0 0 0 0 0
0 0 0 0 1 e7
0 0 0 1 0 e6
0 0 0 1 1 e1+e2, e6+e7
0 0 1 0 0 e5
0 0 1 0 1 e5+e7
0 0 1 1 0 e5+e6
0 0 1 1 1 e1+e2+e5, e5+e6+e7
0 1 0 0 0 e4
0 1 0 0 1 e4+e7
0 1 0 1 0 e4+e6
0 1 0 1 1 e1+e2+e4, e4+e6+e7
0 1 1 0 0 e4+e5
0 1 1 0 1 e1+e3
0 1 1 1 0 e2+e3
0 1 1 1 1 e1+e3+e6, e2+e3+e7
1 0 0 0 0 e3
1 0 0 0 1 e3+e7
1 0 0 1 0 e3+e6
1 0 0 1 1 e1+e2+e3, e3+e6+e7
1 0 1 0 0 e3+e5
1 0 1 0 1 e1+e4
1 0 1 1 0 e2+e4
1 0 1 1 1 e1+e4+e6, e2+e4+e7
1 1 0 0 0 e3+e4
1 1 0 0 1 e1+e5
1 1 0 1 0 e2+e5
1 1 0 1 1 e1+e5+e6, e2+e5+e7
1 1 1 0 0 e1+e7, e2+e6
1 1 1 0 1 e1
1 1 1 1 0 e2
1 1 1 1 1 e1+e6, e2+e7

Say we receive the vector v = c + e = (1 1 1 0 1 1 0).

We compute vHT = (1 0 1 0 1), and e is in the coset of e1+e4. Since
e1+e4 is the unique coset leader, we assume e = e1+e4, and compute
c = v – e2 = (1 1 1 0 1 1 0) - (1 0 0 1 0 0 0) = (0111110). We then
decode to the information symbols (first two positions), obtaining
01.

Code C2 can

 i) Always correct one error in a 7-bit encoded block,

 ii) Always detect two errors in a 7-bit encoded block, and
usually correct them. There are C(7,2) = 21 ways in which
two errors can occur. Of these, 15 can be corrected, and
the other 6 only detected.

 iii) Sometimes detect (but not correct) three errors in a 7-bit
block. There are C(7,3) = 35 ways in which 3 errors can
occur. Of these, 12 can be detected; the remaining 23
cause us to determine the error vector e and codeword c
incorrectly (although in 7 of the 23, only the parity-check
positions are affected).

