
Examples of Syndrome Decoding 

Ex 1   Let C1 be linear binary [6,3,3] code with generator matrix 

  1  0  0   0  1  1 
G  = 0  1  0   1  0  1 
  0  0  1   1  1  0 

and parity check matrix 

 0  1  1   1  0  0 
H  = 1  0  1   0  1  0 
  1  1  0   0  0  1 

The syndromes and coset leaders are: 

 0 = (0,0,0,0,0,0), 
 e1= (1,0,0,0,0,0), 

      --- 
 e6= (0,0,0,0,0,1), 

  
  

 
                     
 
Say we receive the vector v = (1 1 1 1 0 1).   

We know v = c + e, where c is the codeword transmitted, and e is 
the error vector. 

eHT = (v - c)HT = vHT - cHT = vHT - 0 = vHT = (101). 

The table  tells us that e (and v) are in the coset with leader e2.  
Under nearest-neighbor decoding, we want wt(e) to be as small as 
possible, so we assume e = e2. 

Syndrome Coset Leader(s) 
0 0 0  0 
0 0 1  e6 
0 1 0  e5 
0 1 1  e1 
1 0 0  e4 
1 0 1  e2 
1 1 0  e3 
1 1 1  e1+e4,  e2+e5,  e3+e6 

So  c = v – e2 = (1 1 1 1 0 1) - (0 1 0 0 0 0) =  (101101).   

The original message was simply the information symbols in c (the 
first three positions), or 101. 

Say we receive the vector v = c + e = (1 0 0 1 0 0).   

We compute vHT = (111), and e is in the coset of e1+e4.  But there 
are three equally likely alternatives for the error vector.  We have 
detected errors (probably two errors), but we cannot correct them. 

Note we can always correct one error in a block, and occasionally 
we can detect two errors.   

There are C(6,2) = 15 ways in which two errors can occur. 
For 3 of these ways, and can detect (but not correct) the errors. 
For the other 12, we compute e and c incorrectly (although in 
3 of them, only the parity-check positions are affected). 

Ex 2   Let C2 be linear binary [7,2,4] code with generator matrix 
  1  0   1  1  1  0  1 

 0  1   1  1  1  1  0 
and parity check matrix 

 1  1    1  0  0  0  0 
  1  1    0  1  0  0  0 
H  = 1  1    0  0  1  0  0 

0  1    0  0  0  1  0 
1  0    0  0  0  0  1 

 
The syndromes and coset leaders are 

G = 



Syndrome Coset Leader(s) 
0 0 0 0 0  0 
0 0 0 0 1  e7 
0 0 0 1 0  e6 
0 0 0 1 1  e1+e2,  e6+e7 
0 0 1 0 0  e5 
0 0 1 0 1  e5+e7 
0 0 1 1 0  e5+e6 
0 0 1 1 1  e1+e2+e5,  e5+e6+e7 
0 1 0 0 0  e4 
0 1 0 0 1  e4+e7 
0 1 0 1 0  e4+e6 
0 1 0 1 1  e1+e2+e4,  e4+e6+e7 
0 1 1 0 0  e4+e5 
0 1 1 0 1  e1+e3 
0 1 1 1 0  e2+e3 
0 1 1 1 1  e1+e3+e6,  e2+e3+e7 
1 0 0 0 0  e3 
1 0 0 0 1  e3+e7 
1 0 0 1 0  e3+e6 
1 0 0 1 1  e1+e2+e3,  e3+e6+e7 
1 0 1 0 0  e3+e5 
1 0 1 0 1  e1+e4 
1 0 1 1 0  e2+e4 
1 0 1 1 1  e1+e4+e6,  e2+e4+e7 
1 1 0 0 0  e3+e4 
1 1 0 0 1  e1+e5 
1 1 0 1 0  e2+e5 
1 1 0 1 1  e1+e5+e6,  e2+e5+e7 
1 1 1 0 0  e1+e7,   e2+e6 
1 1 1 0 1  e1 
1 1 1 1 0  e2 
1 1 1 1 1  e1+e6,  e2+e7 

Say we receive the vector v = c + e = (1 1 1 0 1 1 0).   

We compute vHT = (1 0 1 0 1), and e is in the coset of e1+e4.  Since 
e1+e4 is the unique coset leader, we assume e = e1+e4, and compute 
c = v – e2 = (1 1 1 0 1 1 0) - (1 0 0 1 0 0 0) = (0111110).  We then 
decode to the information symbols (first two positions), obtaining 
01. 

Code C2 can 

 i)  Always correct one error in a 7-bit encoded block, 

 ii)  Always detect two errors in a 7-bit encoded block, and 
usually correct them.  There are C(7,2) = 21 ways in which 
two errors can occur.  Of these, 15 can be corrected, and 
the other 6 only detected. 

 iii) Sometimes detect (but not correct) three errors in a 7-bit 
block.  There are C(7,3) = 35 ways in which 3 errors can 
occur.  Of these, 12 can be detected; the remaining 23 
cause us to determine the error vector e and codeword c 
incorrectly (although in 7 of the 23, only the parity-check 
positions are affected).   


