Examples of Syndrome Decoding

<u>Ex 1</u> Let C_1 be linear binary [6,3,3] code with generator matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

and parity check matrix

$$\mathbf{H} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The syndromes and coset leaders are:

Syndrome	Coset Leader(s)	
000	0	
001	e ₆	0 = (0,0,0,0,0,0),
010	e ₅	$e_1 = (1,0,0,0,0,0),$
011	<i>e</i> ₁	
100	e_4	$e_6 = (0,0,0,0,0,1),$
101	<i>e</i> ₂	
110	e ₃	
111	$e_1 + e_4, e_2 + e_5, e_3 + e_6$	

Say we receive the vector $\mathbf{v} = (1\ 1\ 1\ 1\ 0\ 1)$.

We know v = c + e, where c is the codeword transmitted, and e is the error vector.

$$\boldsymbol{e} \mathbf{H}^{\mathrm{T}} = (\boldsymbol{v} - \boldsymbol{c}) \mathbf{H}^{\mathrm{T}} = \boldsymbol{v} \mathbf{H}^{\mathrm{T}} - \boldsymbol{c} \mathbf{H}^{\mathrm{T}} = \boldsymbol{v} \mathbf{H}^{\mathrm{T}} - \boldsymbol{0} = \boldsymbol{v} \mathbf{H}^{\mathrm{T}} = (101).$$

The table tells us that e (and v) are in the coset with leader e_2 . Under nearest-neighbor decoding, we want wt(e) to be as small as possible, so we assume $e = e_2$. So $c = v - e_2 = (1 \ 1 \ 1 \ 1 \ 0 \ 1) - (0 \ 1 \ 0 \ 0 \ 0) = (101101).$

The original message was simply the information symbols in c (the first three positions), or 101.

Say we receive the vector $\mathbf{v} = \mathbf{c} + \mathbf{e} = (1\ 0\ 0\ 1\ 0\ 0)$.

We compute $\mathbf{v}\mathbf{H}^{\mathrm{T}} = (111)$, and \mathbf{e} is in the coset of $\mathbf{e}_1 + \mathbf{e}_4$. But there are three equally likely alternatives for the error vector. We have detected errors (probably two errors), but we cannot correct them.

Note we can always *correct one error* in a block, and occasionally we can *detect two errors*.

There are C(6,2) = 15 ways in which two errors can occur.

For 3 of these ways, and can detect (but not correct) the errors. For the other 12, we compute e and c incorrectly (although in 3 of them, only the parity-check positions are affected).

<u>Ex 2</u> Let C_2 be linear binary [7,2,4] code with generator matrix

	ſ1	0	1	1	1	0	1
G =	0	1	1	1	1	1	0

and parity check matrix

H =	(1	1	1	0	0	0	0
	1	1	0	1	0	0	0
H =	1	1	0	0	1	0	0
	0	1	0	0	0	1	0
	1	0	0	0	0	0	1,

The syndromes and coset leaders are

Syndrome	Coset Leader(s)
00000	0
00001	e ₇
00010	<i>e</i> ₆
00011	$e_1 + e_2, e_6 + e_7$
00100	e ₅
00101	<i>e</i> ₅ + <i>e</i> ₇
00110	$e_5 + e_6$
00111	$e_1 + e_2 + e_5, e_5 + e_6 + e_7$
01000	e ₄
01001	$e_4 + e_7$
01010	$e_4 + e_6$
01011	$e_1 + e_2 + e_4, e_4 + e_6 + e_7$
01100	$e_4 + e_5$
01101	$e_1 + e_3$
01110	$e_2 + e_3$
01111	$e_1+e_3+e_6, e_2+e_3+e_7$
10000	<i>e</i> ₃
10001	<i>e</i> ₃ + <i>e</i> ₇
10010	$e_3 + e_6$
10011	$e_1 + e_2 + e_3, e_3 + e_6 + e_7$
10100	$e_3 + e_5$
10101	$e_1 + e_4$
10110	$e_2 + e_4$
10111	$e_1 + e_4 + e_6, e_2 + e_4 + e_7$
11000	$e_3 + e_4$
11001	$e_1 + e_5$
11010	e_2+e_5
11011	$e_1 + e_5 + e_6, e_2 + e_5 + e_7$
11100	$e_1 + e_7, e_2 + e_6$
11101	<i>e</i> ₁
11110	<i>e</i> ₂
11111	$e_1 + e_6, e_2 + e_7$

Say we receive the vector $v = c + e = (1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0)$.

We compute $\mathbf{v}\mathbf{H}^{\mathrm{T}} = (1\ 0\ 1\ 0\ 1)$, and \mathbf{e} is in the coset of $\mathbf{e}_1 + \mathbf{e}_4$. Since $\mathbf{e}_1 + \mathbf{e}_4$ is the unique coset leader, we assume $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_4$, and compute $\mathbf{c} = \mathbf{v} - \mathbf{e}_2 = (1\ 1\ 1\ 0\ 1\ 1\ 0) - (1\ 0\ 0\ 1\ 0\ 0\ 0) = (0\ 1\ 1\ 1\ 1\ 1\ 0)$. We then decode to the information symbols (first two positions), obtaining **0**1.

Code C_2 can

- i) Always correct one error in a 7-bit encoded block,
- ii) Always detect two errors in a 7-bit encoded block, and usually correct them. There are C(7,2) = 21 ways in which two errors can occur. Of these, 15 can be corrected, and the other 6 only detected.
- iii) Sometimes detect (but not correct) three errors in a 7-bit block. There are C(7,3) = 35 ways in which 3 errors can occur. Of these, 12 can be detected; the remaining 23 cause us to determine the error vector e and codeword c incorrectly (although in 7 of the 23, only the parity-check positions are affected).