Examples of Syndrome Decoding

Ex 1 Let C_{1} be linear binary $[6,3,3]$ code with generator matrix

$$
\mathrm{G}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

and parity check matrix

$$
\mathrm{H}=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The syndromes and coset leaders are:

Syndrome	Coset Leader(s)
000	$\mathbf{0}$
001	\boldsymbol{e}_{6}
010	\boldsymbol{e}_{5}
011	\boldsymbol{e}_{1}
100	\boldsymbol{e}_{4}
101	\boldsymbol{e}_{2}
110	\boldsymbol{e}_{3}
111	$\boldsymbol{e}_{1}+\boldsymbol{e}_{4}, \boldsymbol{e}_{2}+\boldsymbol{e}_{5}, \boldsymbol{e}_{3}+\boldsymbol{e}_{6}$

$$
\begin{aligned}
& \mathbf{0}=(0,0,0,0,0,0), \\
& \boldsymbol{e}_{1}=(1,0,0,0,0,0), \\
& \boldsymbol{e}_{6}=(0,0,0,0,0,1),
\end{aligned}
$$

Say we receive the vector $\boldsymbol{v}=\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 1\end{array}\right)$.
We know $\boldsymbol{v}=\boldsymbol{c}+\boldsymbol{e}$, where \mathbf{c} is the codeword transmitted, and \boldsymbol{e} is the error vector.
$\boldsymbol{e} \mathbf{H}^{\mathrm{T}}=(\boldsymbol{v}-\boldsymbol{c}) \mathbf{H}^{\mathrm{T}}=\boldsymbol{v} \mathbf{H}^{\mathrm{T}}-\boldsymbol{c} \mathbf{H}^{\mathrm{T}}=\boldsymbol{v} \mathbf{H}^{\mathrm{T}}-\mathbf{0}=\boldsymbol{v} \mathbf{H}^{\mathrm{T}}=(101)$.
The table tells us that $\boldsymbol{e}($ and $\boldsymbol{v})$ are in the coset with leader \boldsymbol{e}_{2}. Under nearest-neighbor decoding, we want $w t(\boldsymbol{e})$ to be as small as possible, so we assume $\boldsymbol{e}=\boldsymbol{e}_{2}$

So $\boldsymbol{c}=\boldsymbol{v}-\boldsymbol{e}_{2}=(111101)-(010000)=(101101)$.
The original message was simply the information symbols in \boldsymbol{c} (the first three positions), or 101.

Say we receive the vector $\boldsymbol{v}=\boldsymbol{c}+\boldsymbol{e}=\left(\begin{array}{lll}100100\end{array}\right)$.
We compute $\boldsymbol{v} \mathbf{H}^{\mathrm{T}}=(111)$, and \boldsymbol{e} is in the coset of $\boldsymbol{e}_{1}+\boldsymbol{e}_{4}$. But there are three equally likely alternatives for the error vector. We have detected errors (probably two errors), but we cannot correct them.

Note we can always correct one error in a block, and occasionally we can detect two errors.

There are $\mathrm{C}(6,2)=15$ ways in which two errors can occur.
For 3 of these ways, and can detect (but not correct) the errors.
For the other 12, we compute \boldsymbol{e} and \boldsymbol{c} incorrectly (although in 3 of them, only the parity-check positions are affected).

Ex 2 Let C_{2} be linear binary $[7,2,4]$ code with generator matrix

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

and parity check matrix

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & & 0 & 1 & 0 & 0
\end{array}\right)
$$

The syndromes and coset leaders are

Syndrome	Coset Leader(s)
00000	$\mathbf{0}$
00001	\boldsymbol{e}_{7}
00010	\boldsymbol{e}_{6}
00011	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}, \boldsymbol{e}_{6}+\boldsymbol{e}_{7}$
00100	\boldsymbol{e}_{5}
00101	$\boldsymbol{e}_{5}+\boldsymbol{e}_{7}$
00110	$\boldsymbol{e}_{5}+\boldsymbol{e}_{6}$
00111	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{5}, \boldsymbol{e}_{5}+\boldsymbol{e}_{6}+\boldsymbol{e}_{7}$
01000	\boldsymbol{e}_{4}
01001	$\boldsymbol{e}_{4}+\boldsymbol{e}_{7}$
01010	$\boldsymbol{e}_{4}+\boldsymbol{e}_{6}$
01011	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{4}, \boldsymbol{e}_{4}+\boldsymbol{e}_{6}+\boldsymbol{e}_{7}$
01100	$\boldsymbol{e}_{4}+\boldsymbol{e}_{5}$
01101	$\boldsymbol{e}_{1}+\boldsymbol{e}_{3}$
01110	$\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$
01111	$\boldsymbol{e}_{1}+\boldsymbol{e}_{3}+\boldsymbol{e}_{6}, \boldsymbol{e}_{2}+\boldsymbol{e}_{3}+\boldsymbol{e}_{7}$
10000	\boldsymbol{e}_{3}
10001	$\boldsymbol{e}_{3}+\boldsymbol{e}_{7}$
10010	$\boldsymbol{e}_{3}+\boldsymbol{e}_{6}$
10011	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}, \boldsymbol{e}_{3}+\boldsymbol{e}_{6}+\boldsymbol{e}_{7}$
10100	$\boldsymbol{e}_{3}+\boldsymbol{e}_{5}$
10101	$\boldsymbol{e}_{1}+\boldsymbol{e}_{4}$
10110	$\boldsymbol{e}_{2}+\boldsymbol{e}_{4}$
10111	$\boldsymbol{e}_{1}+\boldsymbol{e}_{4}+\boldsymbol{e}_{6}, \boldsymbol{e}_{2}+\boldsymbol{e}_{4}+\boldsymbol{e}_{7}$
11000	$\boldsymbol{e}_{3}+\boldsymbol{e}_{4}$
11001	$\boldsymbol{e}_{1}+\boldsymbol{e}_{5}$
11010	$\boldsymbol{e}_{2}+\boldsymbol{e}_{5}$
11011	$\boldsymbol{e}_{1}+\boldsymbol{e}_{5}+\boldsymbol{e}_{6}, \boldsymbol{e}_{2}+\boldsymbol{e}_{5}+\boldsymbol{e}_{7}$
11100	$\boldsymbol{e}_{1}+\boldsymbol{e}_{7}, \boldsymbol{e}_{2}+\boldsymbol{e}_{6}$
11101	\boldsymbol{e}_{1}
11110	\boldsymbol{e}_{2}
11111	$\boldsymbol{e}_{1}+\boldsymbol{e}_{6}, \boldsymbol{e}_{2}+\boldsymbol{e}_{7}$

Say we receive the vector $\boldsymbol{v}=\boldsymbol{c}+\boldsymbol{e}=(1110110)$.
We compute $\boldsymbol{v} \mathbf{H}^{\mathrm{T}}=\left(\begin{array}{lll}1 & 0 & 1\end{array} 01\right)$, and \boldsymbol{e} is in the coset of $\boldsymbol{e}_{1}+\boldsymbol{e}_{4}$. Since $\boldsymbol{e}_{1}+\boldsymbol{e}_{4}$ is the unique coset leader, we assume $\boldsymbol{e}=\boldsymbol{e}_{1}+\boldsymbol{e}_{4}$, and compute $\boldsymbol{c}=\boldsymbol{v}-\boldsymbol{e}_{2}=(1110110)-(1001000)=(\mathbf{0 1 1 1 1 1 0})$. We then decode to the information symbols (first two positions), obtaining 01.

Code C_{2} can

i) Always correct one error in a 7-bit encoded block,
ii) Always detect two errors in a 7-bit encoded block, and usually correct them. There are $\mathrm{C}(7,2)=21$ ways in which two errors can occur. Of these, 15 can be corrected, and the other 6 only detected.
iii) Sometimes detect (but not correct) three errors in a 7-bit block. There are $\mathrm{C}(7,3)=35$ ways in which 3 errors can occur. Of these, 12 can be detected; the remaining 23 cause us to determine the error vector \boldsymbol{e} and codeword \boldsymbol{c} incorrectly (although in 7 of the 23, only the parity-check positions are affected).

